{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 12: Integrated Citcuits and Operational Amplifiers" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 12.1, Page No.442" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# dc currents and voltage of differential amplifier\n", "\n", "import math\n", "# Variable declaration\n", "Vcc = 12 # collector voltage\n", "Vee = -12 # emitter voltage\n", "Rc = 4.1*10**3 # Collector resistance\n", "Re = 3.8*10**3 # emitter resistance\n", "Vbe = 0.7 # voltage across base-emitter junction\n", "\n", "#Calculations\n", "Ie = (Vcc-Vbe)/Re\n", "Ic = 0.5*Ie\n", "Vo = Vcc-Ic*Rc\n", "\n", "#Result\n", "print(\"Ie = %.4f mA\\nIc = %.3f mA\\nVo = %.1f V\"%(Ie*1000,Ic*1000,Vo))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ie = 2.9737 mA\n", "Ic = 1.487 mA\n", "Vo = 5.9 V\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 12.2, Page No.442" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Differential amplifier parameters\n", "\n", "import math\n", "#Variable declaration\n", "Vcc = 12 # collector voltage\n", "Vee = -12 # emitter voltage\n", "Rc = 1*10**6 # Collector resistance\n", "Re = 1*10**6 # emitter resistance\n", "Vbe = 0.7 # voltage across base-emitter junction\n", "vi = 2.1*10**-3 # AC input voltage\n", "beta = 75 \n", "\n", "#Calculations\n", "#(a)\n", "Ie = (Vcc-Vbe)/Re\n", "ie = 0.5*Ie\n", "re = (25*10**-3)/ie\n", "re_dash = 4420.0#value used in the book\n", "#(b)\n", "g = Rc/(2*re_dash)\n", "g = math.floor(g*10)/10\n", "#(c)\n", "vo = g*vi\n", "vo = math.floor(vo*10000)/10000\n", "#(d)\n", "Zi = 2*beta*re\n", "#(e)\n", "cmg = Rc/(re+2*Re)\n", "cmg = math.ceil(cmg*1000)/1000\n", "#(f)\n", "cmrr = g/cmg\n", "#(g)\n", "cmrr_db = 20*math.log10(cmrr)\n", "\n", "#Result\n", "print(\"(a) re = %d ohm\\n(b) voltage gain for differential input = %.1f\\n(c) AC output voltage = %.4f V\"%(re,g,vo))\n", "print(\"(d) input impedance = %d k-ohm\\n(e) CMRR = %.2f\\n(g) CMRR' = %.1f dB\"%(Zi/1000,cmrr,cmrr_db))\n", "\n", "#Answer for re is wong in the book " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) re = 4424 ohm\n", "(b) voltage gain for differential input = 113.1\n", "(c) AC output voltage = 0.2375 V\n", "(d) input impedance = 663 k-ohm\n", "(e) CMRR = 226.65\n", "(g) CMRR' = 47.1 dB\n" ] } ], "prompt_number": 39 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 12.3, Page No. 447" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Op-amp with negative feedback\n", "\n", "import math\n", "#Variable declaration\n", "Ag = 100000.0 # open loop gain of Op-amp\n", "fb = 0.01 # feed back factor\n", "vi = 2*10**-3 # input voltage\n", "\n", "#Calculations\n", "# a\n", "g = Ag/(1+(fb*Ag))\n", "# b\n", "v = vi*g\n", "# c\n", "Ev = v/Ag\n", "\n", "#Result\n", "print(\"(a) Closed loop gain = %.1f \\n(b) Output = %.4f V\\n(c) Error voltage = %.3f*10^-6 V\"%(g,v,Ev*10**6))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Closed loop gain = 99.9 \n", "(b) Output = 0.1998 V\n", "(c) Error voltage = 1.998*10^-6 V\n" ] } ], "prompt_number": 44 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 12.4, Page No. 447" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Op-amp with negative feedback\n", "\n", "import math\n", "#Variable declaration\n", "Ag = 15000.0 # open loop gain of Op-amp\n", "fb = 0.01 # feed back factor\n", "vi = 2*10**-3 # input voltage\n", "\n", "#Calculations\n", "# a\n", "g = Ag/(1+(fb*Ag))\n", "# b\n", "v = vi*g\n", "# c\n", "Ev = v/Ag\n", "\n", "#Result\n", "print(\"(a) Closed loop gain = %.3f \\n(b) Output = %.4f V\\n(c) Error voltage = %.3f*10^-5 V\"%(g,v,Ev*10**5))\n", "print(\"\\nComparison conclusion:\\nA decrease in open loop gain causes a corresponding increase in error voltage,\")\n", "print(\"thus keeping the output voltage nearly constant.\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Closed loop gain = 99.338 \n", "(b) Output = 0.1987 V\n", "(c) Error voltage = 1.325*10^-5 V\n", "\n", "Comparison conclusion:\n", "A decrease in open loop gain causes a corresponding increase in error voltage,\n", "thus keeping the output voltage nearly constant.\n" ] } ], "prompt_number": 49 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 12.5, Page No. 448" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# input/output impedances\n", "\n", "import math\n", "#variable declaration\n", "g = 100000.0 # open loop gain\n", "Zi = 2*10**6 # input impedance\n", "Zo = 75 # output impedance\n", "beta = 0.01 # feedback factor\n", "\n", "#Calculations\n", "D = 1+ beta*g\n", "Zi_cl = Zi*D\n", "Zo_cl = Zo/D\n", "\n", "#Result\n", "print(\"Closed loop input impedance = %.0f M-ohm\\nClosed loop output impedance = %.4f ohm\"%(Zi_cl/10**6,Zo_cl))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Closed loop input impedance = 2002 M-ohm\n", "Closed loop output impedance = 0.0749 ohm\n" ] } ], "prompt_number": 53 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 12.6, Page No.448" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# closed loop gain and disensitivity\n", "\n", "import math\n", "#Variable declaration\n", "g = 100000.0 # open loop gain\n", "beta = 0.001 # feedback factor\n", "\n", "#calculations\n", "clg = g/(1+ beta*g)\n", "D = 1+g*beta\n", "\n", "# Result\n", "print(\"Closed loop gain = %.1f \\nDesensitivity = %.0f \"%(clg,D))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Closed loop gain = 990.1 \n", "Desensitivity = 101 \n" ] } ], "prompt_number": 56 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 12.7, Page No.448" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# closed loop gain and upper cut off frequency\n", "\n", "import math\n", "#Variable declaration\n", "f = 10**6 # unity gain frequency\n", "alg = 100000.0 # open loop gain\n", "b1 = 0.001 # feedback factor in case 1\n", "b2 = 0.01 # feedback factor in case 2\n", "b3 = 0.1 # feedback factor in case 3\n", "\n", "#calculations\n", "# a\n", "f1 = f/alg\n", "# b\n", "g2 = alg/(1+alg*b1)\n", "f2 = f/g2\n", "# c\n", "g3 = alg/(1+alg*b2)\n", "f3 = f/g3\n", "# d\n", "g4 = alg/(1+alg*b3)\n", "f4 = f/g4\n", "\n", "#Result\n", "print(\"Open loop,\\tgain = %.0f \\tf2 = %d Hz\"%(alg,f1))\n", "print(\"Closed loop,\\tgain = %.1f \\tf2 = %d Hz\"%(g2,f2))\n", "print(\"Closed loop,\\tgain = %.1f \\tf2 = %d Hz\"%(g3,f3))\n", "print(\"Closed loop,\\tgain = %.3f \\tf2 = %d Hz\"%(g4,f4))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Open loop,\tgain = 100000 \tf2 = 10 Hz\n", "Closed loop,\tgain = 990.1 \tf2 = 1010 Hz\n", "Closed loop,\tgain = 99.9 \tf2 = 10010 Hz\n", "Closed loop,\tgain = 9.999 \tf2 = 100010 Hz\n" ] } ], "prompt_number": 60 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 12.8, Page No.449" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Slew rating\n", "\n", "import math\n", "#Variable declaration\n", "Imax = 10*10**-6 # maximum current\n", "C = 4000*10**-12 # capacitance in pF\n", "\n", "#Calculations\n", "sr = Imax/C\n", "\n", "#Result\n", "print(\"Slew rate = %.1f V/ms\"%(sr/1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Slew rate = 2.5 V/ms\n" ] } ], "prompt_number": 63 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 12.9, Page No. 449" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# slew rate distortion\n", "\n", "import math\n", "#Variable declaration\n", "sr = 0.4 # Slew rate\n", "V = 6 # peak value of voltage\n", "f = 10*10**3 # frequency\n", "\n", "#Calculations\n", "slope = 2*math.pi*f*V\n", "\n", "#Result\n", "print(\"Initial slope of sine wave =%.5f V/micro-sec\"%(slope/10**6))\n", "print(\"\\nSince the slew rate of amplifier is %.1f V/micro-sec, there is no slew rate distortion.\"%(sr))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Initial slope of sine wave =0.37699 V/micro-sec\n", "\n", "Since the slew rate of amplifier is 0.4 V/micro-sec, there is no slew rate distortion.\n" ] } ], "prompt_number": 70 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 12.10, Page No. 449" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Slew rate distortion \n", "\n", "import math\n", "#Variable declaration\n", "sr = 0.5*10**6 # slew rate\n", "V = 10 # peak value of input signal\n", "f = 10*10**3 # frequency\n", "\n", "#calculations\n", "# a\n", "slope = 2*math.pi*f*V\n", "# b\n", "Vp = sr/(2*math.pi*f)\n", "\n", "#Result\n", "print(\"(a) Initial slope of sine wave = %.3f V/micro-sec\"%(slope/10**6))\n", "print(\"Since initial slope is more than the slew rate of amplifier, slew rate distortion will occur.\")\n", "print(\"\\n(b) To eliminate slew rate distortion,\\n Vp = %.2f V\"%Vp)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Initial slope of sine wave = 0.628 V/micro-sec\n", "Since initial slope is more than the slew rate of amplifier, slew rate distortion will occur.\n", "\n", "(b) To eliminate slew rate distortion,\n", " Vp = 7.96 V\n" ] } ], "prompt_number": 72 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 12.11, Page No.451" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# inverting amplifier\n", "\n", "import math\n", "#Variable declaration\n", "A = 100000.0 # open loop gain\n", "Zo = 75.0 # output impedance\n", "f = 1.0*10**6 # unity gain frequency\n", "R1 = 1.0*10**3 # Source Resistance \n", "Rf = 100.0*10**3 # feedback resistance\n", "\n", "#Calculations\n", "# a\n", "g = -Rf/R1\n", "# b\n", "beta = R1/(R1+Rf)\n", "D = 1+(A*beta)\n", "# c\n", "f2 = beta*f\n", "# d\n", "Zi_cl = R1\n", "\n", "#result\n", "print(\"(a) Gain = %f\\n(b) disensitivity = %.1f\"%(g,D))\n", "print(\"(c) closed loop upper cut off frequency = %.1f*10^3 Hz\\n(d) closed loop input impedance = %.0f ohm\"%(f2/1000,Zi_cl))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Gain = -100.000000\n", "(b) disensitivity = 991.1\n", "(c) closed loop upper cut off frequency = 9.9*10^3 Hz\n", "(d) closed loop input impedance = 1000 ohm\n" ] } ], "prompt_number": 79 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 12.12, Page No. 453" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# closed loop voltage gain, input/output impedance(refering to fig 12.11)\n", "\n", "import math\n", "# Variable declaration\n", "R2 = 100.0*10**3 # Resistance R2\n", "R1 = 100.0 # Resistance R1\n", "A = 100000.0 # open loop gain\n", "Zin = 2*10**6 # input impedance\n", "Zo = 75 # output impedance\n", "\n", "# Calculations\n", "g = (R1+R2)/R1\n", "beta = R1/(R1+R2)\n", "Zi_dash = (1+A*beta)*Zin\n", "Zo_dash = Zo/(1+A*beta)\n", "\n", "#Result\n", "print(\"Closed loop gain = %.0f \\nClosed loop input impedance = %.1f M-ohm\\nClosed loop output impedance = %.3f ohm\"%(g,Zi_dash/10**6,Zo_dash))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Closed loop gain = 1001 \n", "Closed loop input impedance = 201.8 M-ohm\n", "Closed loop output impedance = 0.743 ohm\n" ] } ], "prompt_number": 84 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 12.13, Page No.454" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Op-amp parameters(refering to fig. 12.13)\n", "\n", "import math\n", "#Variable declaration\n", "A = 100000.0 # open loop gain\n", "f = 1.0*10**6 # unity gain frequency\n", "R3 = 150 *10**3 # Resistance R3\n", "Ci = 1*10**-6 # inpuut capacitor\n", "R2 = 100*10**3 # Resistance R2\n", "Cb = 1*10**-6 # Bias capacitor\n", "R1 = 1.0*10**3 # Resistance R1\n", "Co = 1*10**-6 # output capacitance\n", "Rl = 15*10**3 # load resistance\n", "\n", "#Calculations\n", "# a\n", "A = (R1+R2)/R1\n", "# b\n", "beta = 1/A\n", "f2 = f/A\n", "# c\n", "fc1 = 1/(2*math.pi*Ci*R3)\n", "fc2 = 1/(2*math.pi*Cb*Rl)\n", "fc3 = 1/(2*math.pi*Co*R1)\n", "\n", "#Result\n", "print(\"(a) Avf = %.0f \\n\\n(b) f2' =%.1f*10^3 Hz\"%(A,f2/1000))\n", "print(\"\\n(c) The critical frequencies are,\\n fc = %.3f Hz\\n fc = %.2f Hz\\n fc = %.2f Hz\"%(fc1,fc2,fc3))\n", "print(\"\\n(d) Evidently the lower cut off frequency is the highest of the above three critical frequencies, i.e. %.2f Hz\"%fc3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Avf = 101 \n", "\n", "(b) f2' =9.9*10^3 Hz\n", "\n", "(c) The critical frequencies are,\n", " fc = 1.061 Hz\n", " fc = 10.61 Hz\n", " fc = 159.15 Hz\n", "\n", "(d) Evidently the lower cut off frequency is the highest of the above three critical frequencies, i.e. 159.15 Hz\n" ] } ], "prompt_number": 93 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 12.14, Page No.455" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# output voltage(referring fig.12.14)\n", "\n", "import math\n", "# Variable declaration\n", "v1 = 0.5 # input voltage 1\n", "v2 = 1.5 # input voltage 2\n", "v3 = 0.2 # input voltage 3\n", "R1 = 10.0*10**3 # resistance R1\n", "R2 = 10.0*10**3 # resistance R2\n", "R3 = 10.0*10**3 # resistance R3\n", "Rf = 50.0*10**3 # feedback resistance\n", "\n", "#Calculations\n", "vo = -Rf*((v1/R1)+(v2/R2)+(v3/R3))\n", "\n", "#Result\n", "print(\"Output Voltage = %.0f V\"%vo)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Output Voltage = -11 V\n" ] } ], "prompt_number": 95 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 12.15, Page No.455" ] }, { "cell_type": "code", "collapsed": false, "input": [ "print(\"Theoretical example\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Theoretical example\n" ] } ], "prompt_number": 96 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 12.16, Page No.456" ] }, { "cell_type": "code", "collapsed": false, "input": [ "print(\"Theoretical example\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Theoretical example\n" ] } ], "prompt_number": 97 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 12.17, Page No. 457" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# difference amplifier(referring fig. 12.18)\n", "\n", "import math\n", "#Variable declaration\n", "R1 = 50.0*10**3 # Resistance R1\n", "R2 = 10.0*10**3 # Resistance R2\n", "Vs1 = 4.5 # input voltage at channel 1\n", "Vs2 = 5.0 # input voltage at channel 2\n", "\n", "\n", "#Calculations\n", "vo = R1*(Vs2-Vs1)/R2\n", "\n", "#Result\n", "print(\"Output voltage = %.1f V\"%vo)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Output voltage = 2.5 V\n" ] } ], "prompt_number": 99 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 12.18, Page No.458" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# CMRR in dB\n", "\n", "import math\n", "#Variable declaration\n", "A = 50.0 # gain of difference amplifier\n", "v = 2.0 # input voltage\n", "vo = 5.0*10**-3 # output voltage \n", "\n", "#Calculations\n", "Vcom = 0.5*(v+v)\n", "Acom = vo/Vcom\n", "cmrr = A/Acom\n", "cmrr = 20*math.log10(cmrr)\n", "\n", "#Result\n", "print(\"CMRR = %.2f dB\"%(cmrr))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "CMRR = 86.02 dB\n" ] } ], "prompt_number": 101 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 12.19, Page No.458" ] }, { "cell_type": "code", "collapsed": false, "input": [ "print(\"Theoretical Example\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Theoretical Example\n" ] } ], "prompt_number": 102 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 12.20, Page No.459" ] }, { "cell_type": "code", "collapsed": false, "input": [ "print(\"Theoretical Example\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Theoretical Example\n" ] } ], "prompt_number": 103 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 12.21, Page No.466" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# two pole high pass filter(referring fig. 12.32)\n", "\n", "import math\n", "#Variable declaration\n", "R1 = 10.0*10**3 # Resistance R1\n", "R2 = 5.6*10**3 # Resistance R2\n", "R = 1.0*10**3 # Resistance R\n", "C = 0.01 *10**-6 # capacitance \n", "vi = 1.6*10**-3 # input voltage \n", "\n", "#Calculations\n", "# a\n", "A = 1+(R2/R1)\n", "# b\n", "vo = A*vi\n", "# c\n", "pi = math.ceil(math.pi*10000)/10000\n", "fc = 1/(2*pi*R*C)\n", "# d\n", "gain = 0.707*A\n", "\n", "#Result\n", "print(\"(a) midband gain = %.2f\\n(b) output voltage = %.3f mV\\n(c) fc = %.2f Hz\\n(d) Gain = %.3f\"%(A,vo*1000,fc,gain))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) midband gain = 1.56\n", "(b) output voltage = 2.496 mV\n", "(c) fc = 15915.46 Hz\n", "(d) Gain = 1.103\n" ] } ], "prompt_number": 112 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 12.22, Page No. 466" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Low pass filter(referring fig. 12.30)\n", "\n", "import math\n", "#Variable declaration\n", "vi = 1.1*10**-3 # input voltage\n", "R = 10*10**3 # Resistance\n", "C = 0.001*10**-6 # Capacitance\n", "R1 = 10*10**3 # Resistance R1\n", "R2 = 5.6*10**3 # Resistance R2\n", "\n", "#Calculations\n", "# a\n", "A = (R1+R2)/R1\n", "vo1 = A*vi\n", "# b\n", "fc = 1/(2*math.pi*R*C)\n", "# c\n", "vo = 0.707*vo1\n", "\n", "#Result\n", "print(\"(a) Avf = %.2f\\n Vo = %.3f*10^-3 V\\n(b) fc = %.3f*10^3 Hz\\n(c) at f = fc,\\nVo = %.3f* 10^-3 V\"%(A,vo1*1000,fc/1000,vo*1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Avf = 1.56\n", " Vo = 1.716*10^-3 V\n", "(b) fc = 15.915*10^3 Hz\n", "(c) at f = fc,\n", "Vo = 1.213* 10^-3 V\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 12.23, Page No.466" ] }, { "cell_type": "code", "collapsed": false, "input": [ "print(\"Theoretical example\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Theoretical example\n" ] } ], "prompt_number": 6 } ], "metadata": {} } ] }