{ "metadata": { "name": "", "signature": "sha256:e7ff5ec8c26bca61ce95f7f9a6bfe9182508039293520fdb892a47c60afd9608" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 8 - Quantum chemistry" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1 - pg 460" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Wavelength\n", "#initialisation of variables\n", "v= 299.8 #V\n", "e= 4.802*10**-10 #ev\n", "h= 6.624*10**-27 #ergs sec\n", "c= 3*10**10 #cm/sec\n", "#CALCULATIONS\n", "E= e/v\n", "l= h*c*10**8/(2*E)\n", "#RESULTS\n", "print '%s %.1f %s' % (' Wavelength =',l,'A')\n", "print 'The answers are a bit different due to rounding off error in textbook'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Wavelength = 6203.3 A\n", "The answers are a bit different due to rounding off error in textbook\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2 - pg 462" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the value of numerical coefficient\n", "#initialisation of variables\n", "u= 109677.583 #cm**-1\n", "#RESULTS\n", "print '%s %.1f %s' % (' value of numerical coefficient =',u,' cm')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " value of numerical coefficient = 109677.6 cm\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3 - pg 464" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the wavelength in both cases\n", "#initialisation of variables\n", "import math\n", "h= 6.6234*10**-27 #ergs sec\n", "m= 2.59 #gms\n", "v= 3.35*10**4 #cm sec **-1\n", "e= 4.8*10**-10 #ev\n", "V= 40000. #volts\n", "M= 300. #gms\n", "L= 1836. #A\n", "N= 6*10**23 #molecules\n", "#CALCULATIONS\n", "p= m*v\n", "l= h/p\n", "E= V*e/M\n", "P= math.sqrt(2*E*(1/(L*N)))\n", "L1= h*10**8/P\n", "#RESULTS\n", "print '%s %.2e %s' % (' wavelength =',l,'cm')\n", "print '%s %.4f %s' % (' \\n wavelength =',L1,'A')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " wavelength = 7.63e-32 cm\n", " \n", " wavelength = 0.0614 A\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4 - pg 471" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the lifetime of this excited state\n", "#initialisation of variables\n", "import math\n", "h= 6.624*10**-27 #ergs sec\n", "c= 3*10**10 #cm/sec\n", "u= 5 #cm**-1\n", "#CALCULATIONS \n", "T= h/(h*2*math.pi*c*u)\n", "#RESULTS\n", "print '%s %.1e %s' % (' lifetime of this excited state =',T,'sec')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " lifetime of this excited state = 1.1e-12 sec\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5 - pg 471" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the lifetime\n", "#initialisation of variables\n", "import math\n", "V= 2.5*10**4 #m/sec\n", "m= 30 #gms\n", "s= 10*10**-16 #cm**2\n", "N= 6.023*10**23 #molecules\n", "T= 300 #K\n", "k= 8.3*10**7\n", "#CALCULATIONS\n", "t= math.sqrt((m/(math.pi*k*T)))*(V/(4*s*N))\n", "#RESULTS\n", "print '%s %.1e %s' % (' lifetime =',t,' sec')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " lifetime = 2.0e-10 sec\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7 - pg 494" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the internuclear distances\n", "#initialisation of variables\n", "import math\n", "h= 6.6238*10**-27 #ergssec\n", "N= 6.0254*10**23 #molecules\n", "c= 2.9979*10**10\n", "Be= 60.809\n", "mh= 1.00812 #gms\n", "#CALCULATIONS\n", "u= mh/2.\n", "Re= math.sqrt(h*N/(c*8*math.pi**2*Be*u))\n", "#RESULTS\n", "print '%s %.4e %s' % (' internuclear distances =',Re,'cm ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " internuclear distances = 7.4168e-09 cm \n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8 - pg 497" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Resonance energy\n", "#initialisation of variables\n", "H= 19.8 #kcal\n", "H1= -0.8 #kcal\n", "H2= -29.4 #kcal\n", "#CALCULATIONS\n", "H3= -85.8\n", "H4= -49.2\n", "H5= -H3+H4\n", "#RESULTS\n", "print '%s %.1f %s' % (' Resonance energy =',H5,'cal')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Resonance energy = 36.6 cal\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9 - pg 500" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the no of bonds\n", "#initialisation of variables\n", "import math\n", "R= 1.69 #A\n", "l= 1.49 #A\n", "r= 0.706\n", "#CALCULATIONS\n", "n= 10**((R-l)/r)\n", "#RESULTS\n", "print '%s %.2f' % (' no of bonds = ',n)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " no of bonds = 1.92\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10 - pg 504" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the lattice energy\n", "#initialisation of variables\n", "N= 6.*10**23 #molecules\n", "R= 2.82 #A\n", "e= 4.8*10**-10 #ev\n", "n= 9.\n", "z= 1.748\n", "#CALCULATIONS\n", "U= (N*z*e**2*(1-(1/n)))*182.2/(R*10**-8*7.63*10**12)\n", "#RESULTS\n", "print '%s %.1f %s' % (' lattice energy =',U,'kcal mole**-1')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " lattice energy = 181.9 kcal mole**-1\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11 - pg 507" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the least energy required for transfer\n", "#initialisation of variables\n", "import math\n", "k= 13\n", "e= 4.8*10**-10 #ev\n", "h= 6.624*10**-27 #ergs sec\n", "N= 6.023*10**23 #molecules\n", "l= 1836 #A\n", "#CALCULATIONS\n", "I= e**4*0.080/(l*N*1.28*10**-13*2*k**2*(h/(2*math.pi))**2)\n", "#RESULTS\n", "print '%s %.2f %s' % (' least energy required for transfer=',I,' ev')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " least energy required for transfer= 0.08 ev\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12 - pg 509" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the difference between potentials\n", "#initialisation of variables\n", "i= 54.4 #ev\n", "i1= 24.6 #ev\n", "k= 2.5 \n", "#CALCULATIONS\n", "I= i/(4*k**2)\n", "I1= i1/(4*k**2)\n", "d= I-I1\n", "#RESULTS\n", "print '%s %.1f %s' % (' difference between first and second potential=',d,'ev')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " difference between first and second potential= 1.2 ev\n" ] } ], "prompt_number": 11 } ], "metadata": {} } ] }