{ "metadata": { "name": "", "signature": "sha256:e8a56bec98c8dfc26716196236590a8e6e7a9f919a9f30f91ea12d37d82b5d68" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 6 - Chemical Equilibrium" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1 - pg 353" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the value of Kc\n", "#initialisation of variables\n", "d= 3.880 #g l^-1\n", "M= 208.3 #gm\n", "P= 1 #atm\n", "R= 0.08205 #cal/mol K\n", "T= 473.1 #K\n", "#CALCULATIONS\n", "d1= M*P/(R*T)\n", "d2= (d1-d)/d\n", "Kp= d2**2/(1-d2**2)\n", "Kc= Kp/(R*T)\n", "#RESULTS\n", "print '%s %.3e %s' %(' Kc =',Kc,'moles l^-1')\n", "print '%s %.4f %s' %(' Kp =',Kp,'atm')\n", "print '%s %.4f' %('Fraction dissociated = ',d2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Kc = 4.429e-03 moles l^-1\n", " Kp = 0.1719 atm\n", "Fraction dissociated = 0.3830\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2 - pg 353" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the percentage of Pcl5 dissociated\n", "#initialisation of variables\n", "import math\n", "P= 10 #atm\n", "Kp= 0.1719\n", "#CALCULATIONS\n", "a= math.sqrt(Kp/(10+Kp))*100\n", "#RESULTS\n", "print '%s %.3f %s' % (' percentage =',a,'percent')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " percentage = 13.000 percent\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3 - pg 354" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the value of Kp\n", "#initialisation of variables\n", "P= 0.3429 #atm\n", "p0= 0.3153 #atm\n", "#CALCULATIONS\n", "Kp= (2*(P-p0))**2/(2*p0-P)\n", "#RESULTS\n", "print '%s %.2e %s' % (' Kp =',Kp,'atm')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Kp = 1.06e-02 atm\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4 - pg 355" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the pressure required\n", "#initialisation of variables\n", "Kp= 1.06*10**-2 #atm\n", "a= 0.990\n", "#CALCULATIONS\n", "P= Kp*(1-a**2)/(4*a**2)\n", "#RESULTS\n", "print '%s %.2e %s' % (' pressure =',P,' atm')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " pressure = 5.38e-05 atm\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5 - pg 357" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the pressure required\n", "#initialisation of variables\n", "G= 2054.7 #cal\n", "R= 1.9872 #cal/mol K\n", "T= 298.16 #K\n", "#CALCULATIONS\n", "P= 10**(-G/(2.303*T*R))\n", "#RESULTS\n", "print '%s %.5f %s' % (' pressure =',P,'atm')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " pressure = 0.03120 atm\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7 - pg 359" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the solubility product constant\n", "#initialisation of variables\n", "T= 25 #C\n", "H= 25.31 #cal\n", "H1= -40.02 #cal\n", "H2= -30.36 #cal\n", "S1= 17.67 #cal deg^-1\n", "S2= 13.17 #cal deg^-1\n", "S3= -22.97 #cal deg^-1\n", "R= 1.987 #cal/mol K\n", "#CALCULATIONS\n", "H3= (H+H1-H2)*1000\n", "S4= S1+S2+S3\n", "G= H3-(273.2+T)*S4\n", "Ka= 10**(-G/(2.303*R*(273.2+T)))\n", "#RESULTS\n", "print '%s %.1e' %(' solubility product constant = ',Ka)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " solubility product constant = 1.8e-10\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8 - pg 359" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the increase in free energy\n", "#initialisation of variables\n", "import math\n", "T= 25 #C\n", "H= -36430 #cal\n", "S= -4.19 #cal deg^-1\n", "a= 0.1\n", "f= 0.2\n", "R= 1.987 #cal/mol K\n", "#CALCULATIONS\n", "G= H-(273.2+T)*S\n", "Q= a*f/a**2\n", "G1= G+R*(273.2+T)*math.log(Q)\n", "#RESULTS\n", "print '%s %.1f %s' % (' increase in free energy =',G1, 'cal')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " increase in free energy = -34769.8 cal\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9 - pg 361" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the free energy of formation\n", "#initialisation of variables\n", "H= 21600. #cal\n", "S= 50.339 #cal\n", "S1= 49.003 #cal\n", "S2= 45.767 #cal\n", "T= 298.2 #K\n", "#CALCULATIONS\n", "H1= 2*H\n", "S1= 2*S-S1-S2\n", "G= H1-T*S1\n", "Gj= G/(2*1000)\n", "#RESULTS\n", "print '%s %.3f %s' % (' free energy of formation =',Gj,'kcal')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " free energy of formation = 20.719 kcal\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10 - pg 361" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the range of humidity\n", "#initialisation of variables\n", "R= 1.987 #cal/mol K\n", "T= 25. #C\n", "G1= -193.8 #cal\n", "G2= -54.6 #cal\n", "G3= -253.1 #cal\n", "G4= -253.1 #cal\n", "G5= -54.6 #cal\n", "G6= -309.7 #cal\n", "#CALCULATIONS\n", "G= G1+G2-G3\n", "Ph= 10**(-G*10**3/(2.303*R*(273.2+T)))\n", "G0= G4+G5-G6\n", "Ph1= 10**(-G0*10**3/(2.303*R*(273.2+T)))\n", "p= Ph*100./Ph1\n", "#RESULTS\n", "print '%s %.2f %s' %(' range of humidity =',p,'percent')\n", "print 'The answers are a bit different due to rounding off error in textbook'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " range of humidity = 1.05 percent\n", "The answers are a bit different due to rounding off error in textbook\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11 - pg 362" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Ksp\n", "#initialisation of variables\n", "m= 10**-2\n", "m1= 10**-22\n", "G= -22.15 #kcal\n", "G1= -5.81 #kcal\n", "G2= 20.6 #kcal\n", "T= 25 #C\n", "R= 1.987 #cal/mol K\n", "#CALCULATIONS\n", "G3= G-(G1+G2)\n", "Ksp= 10**(G3*10**3/(2.303*R*(273+T)))\n", "#RESULTS\n", "print '%s %.0e' %(' Ksp = ',Ksp)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Ksp = 8e-28\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12 - pg 366" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the heat of dissociation and standard free energy of iodine\n", "%matplotlib inline\n", "import numpy\n", "import math\n", "import matplotlib\n", "from matplotlib import pyplot\n", "import warnings\n", "#initialization of variables\n", "R=1.987\n", "T=1000 #K\n", "T=numpy.array([973.,1073.,1173.,1274.])\n", "kp=numpy.array([.175e-2,1.108e-2,4.87e-2,17.05e-2])\n", "#calculations\n", "Tx=1000./T\n", "logkp=numpy.log10(kp)\n", "slope, intercept = numpy.polyfit(Tx,logkp,1)\n", "dH=-slope*2.303*R*1000.\n", "dH0=dH-1.5*R*T\n", "dG1=-R*T*logkp[1]*2.303\n", "dGt=28720 #cal\n", "dGI=(dGt/1000. + 4.63)/2\n", "#results\n", "print '%s %d %s' %('Heat of dissociation = ',dH,'cal')\n", "print '%s %.2f %s' %('standard free energy of iodine atom = ',dGI,'kcal/mol')\n", "pyplot.plot(Tx,logkp)\n", "pyplot.xlabel('1000/T')\n", "pyplot.ylabel('log Kp')\n", "pyplot.title('Logarithm of Kp for dissociation of Iodine as a function of reciprocal temperature')\n", "pyplot.show()\n", "warnings.filterwarnings(\"ignore\")\n", "print 'The answers are a bit different due to rounding off error in textbook'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Heat of dissociation = 37460 cal\n", "standard free energy of iodine atom = 16.68 kcal/mol\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAfUAAAEZCAYAAACOzrzoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xe4FOX5//H3DbbYsKEIUmygCCKKYPcYo8Hevvao2GNJ\n9BuNNYlEY4t+jS2isWuMRn+xYwGVo2gQFBWxYEdQERuKLQHh/v3xPEeGZfecPYc5Z3ZnP6/rOtfZ\nnZmdvafec8/MPmPujoiIiFS/dlkHICIiIulQUhcREckJJXUREZGcUFIXERHJCSV1ERGRnFBSFxER\nyYmqSOpm1s3MvjYza2SYuWa2RlvGlfjuG83sCzN7tg2+aw8zmxrnR79WGP9QM7s1vm5yvrcGM9vS\nzCYtxOeHmdnv0oypzO89xsymm9lMM1s+xfH2iOt3u/j+ITM7KK3xZ83M/mRmn5rZR238vblaT4p8\nz+lmdm1rjb8lkvsXaSXu3ugfMBnYtqnh2vIPqAcOL+g2F1gjg1i2BKYCS5ToPwQYnXi/LPAMcBew\naAu+7x1gl1acnrOAW7Nexs2Id775m2EciwLfAX1K9O8R19F2LRh3iz9b6X9AtzjfVtR6kv+/xvYv\nQB0wNesYU5zWycBP2/p7y6nUPf5lwswWKdK5klrM6Q5Mdvf/NDVgPCp/HHgP2NfdZzfni2LF3A14\nrSWBNlR60io6AUsAr2cdSJXpBnzu7p9nHUgbadZ6UmL/1+rMrH1rjbqVxtumypw/zkJMb4uXQRlH\nG+9R5GgDWBy4FPgw/v0FWCzR/xTgI+AD4AgSlTSwE/Ai8BUwBTgr8bkecdjDgPcJVXn32K09cC7w\nA/A98DVwefzcXOBo4E1gBnBlYpxDCNXxJbHf28BmwKHx+6cDBzcyDzoD9wOfA28BR8Tuh8c4foix\nnFXks0OA0UBH4CXg+oL+NwFXAyOAmXF6u5WY39/E6fwGeCt2Xzd+ZgbwCokqPo57GPBQ/Eyx5bg6\n8GT87hHAFcQjaQoqxDgt78Rh3wUOiN3XiuP4EvgUuCMx/s2A52K/ccCmiX4rADcS1p8vgHti9zoS\nR+zAaXGZzQReBXZPTHty/n+RmO5zEp8/Mi63z4H7gFUT/UquN+Wu80DPxLL5GnisyGcL52UH4Bbg\nE8IR/ZmAxX7tgIvjvHwHOK7gs/XEM1VxmTwNXBTn4bvA4MT3dgCuZ962eA4lKn5gIDAmzoeP4rqw\naKL/XwjbylfAy8B6JcZzKOHAc2aM/6gSw/2MULXOifPthsJl7wUVDzAUuBO4OY7/FWCjxLBdgbvj\nfP0sTsM6wH+qbD35cf8Xux8W5+kXwCMk9hHAesDIGPfHwOmJeVW4LR8ZY/oIOCkxjqHA/wNujcv3\nMErs9xLr6BnM2y6fB7rEfpcR9qtfxe5bFHzPApU6sBRhW25YF2YSDoCMedv/Z8A/geULpmlI/L7P\ngV8CGxPWzxnAFUXywBWE/dHrJPaJNLKtMH8O+Qw4G1gDeCK+/xT4O9AhDn9rnJbv4vScTHnrduEy\nKHv7/XGcjfWMX1QqqZ8N/BtYKf49A5wd+w0GphF2uj+JE5tM6lsTdwhAX8KKuFvBgropfnZxFtwh\njgIOK4hnLmEFXJawYX8C/DyxQGYDh8SV5Jw4g64gnA7bjrASLVliHjwFXEnYMPvFcW8T+x1CI6f1\n4ne/Gv/+WqT/TfG7t4jjv7SJ8SXn46KElf00YBFgmziunolxf0lMpMDiRcY3hpBAFiVcSpgJ3FKw\nLNoRNrqvgLVjv1WA3vH17czbkSwGbBZfr0DYsA6M49iPsFNq2CiHx892iPFvGbvXMX9S/x+gU3y9\nD2HHuEqp+U84UGhYF39K2OA2iLFdDjxZznrTzHW+4cCzVMLswfzr8C3APXG+dgfeIK7ThB3T60AX\nYHnC+j6HIus/Yf2aRTjAtPjZDxPfew/hwO4nhAPLsZROshsSEnu7GNNrwAmx388JO+hl4/teDcuk\nyHh2BFaPr7cCvgX6lxh264JlPd+yL9wHEXZ83xP2MQacB4yJ/doDE4D/Y96+o2FdrLb15KY4DUsA\nuxGSaq+4bM4EnonDL0PY1/5vjHtpYGDsdxYLJvXb4nj7xGnYNjFfZwG7xvdL0Ph+77eExNmwP+gL\nrBBfH0hYb9sBv4nxLZb4nlKn3+dbF2K3E+K87EzYR10N/KNgmq6KMW4H/Jewzq8UPzMd2KogD5xA\nWFf2Iewfl2tqW0l89rg4XUsAawLbxrhWIhQ2fym23jZj3S5cBmVvvz+Os7GexQJLdH+b+SuC7YH3\n4usbgHMT/dakkWvehER2ScGC6tHIDnEUxa+pb5Z4/0/g1MQCeTPRr28cvmOi22fA+kVi60o4wl8q\n0e084MbEuJtK6jPjyjawSP+biCtpfL9U/L4uJcaXTOpbAtMK+v+DeMYgjvumRmLrFlfUnyS63UaR\nSj3GNQPYMzl8HO5m4JrCmIGDgGcLuv2bsINdlZCoOhSJq45Grq0RzvI0rPgLzH/m31lfD1xQMH9n\nESudxtabZq7z862jRT6bnJft4/qwTqL/UcCo+PoJEhsuYWdV9KA2Tv9biWGXjMOuTDjw+g+J+z2A\n/YEnSs3bgphPBO6Or39KOPAYVGoaGxnPPcCvS/Sbb1kXW/YsuOMbkejXG/guvt6UkHgWiK8K15Pk\n/u9hEkVMXIe+JWy/+wPjS4xrKAtuyz0T/S8ErksMW5/o19R+7w3KvLeHcCDftzCmptaF2O015k+M\nq8bl0i4xTckzKp8Beyfe/z/mHZgOIXHAG7uNBX5BE9tK/Oz7TUzn7sALxdbbZqzbyWXQou13Ya6x\ndiacHmowJXZrmPFTE/0+SH7QzAaZ2Sgz+8TMviSc1lqxYPxTaZwX6fZx4vV3hA2zwfTE6+8B3P3T\ngm5LFxlnZ8Lpum8T3aYQqqhyTSAc2T5sZhsU9HMS8yd+zxfMm5eN6cyC8+n9xGe9SP/Cz89w9+8L\nPr+AGNe+hErwIzN70Mx6xd6nEKqmcWb2ipkdmhj/lBLxrUaYr181Eh8AZnawmb1oZjPMbAahyihc\nX0pZNTlNcTo+Z/7lV7jeFFsPoPF1vjlWIhzdF46rIabC7adwHhb6MX53/y6+XJpQFS4KTEvMu6sJ\nR/wLMLOecblOM7OvCJe6VozjfYJQtf0VmG5m15jZMiXGs4OZPWtmn8fv3JHyl1c5ktvyd8AS8X6R\nroQd79wWjLPS1pPk8u8OXJZYhg33H3QhbEfvtnC8hXEl99Ol9nsNw69GuLSyADM72cxeM7MvY7wd\nCOt8S/QA7klM+2uEg41VEsMU7tsL3yfzwIcF42/YH3Wj6W1lvn2pma1iZneY2Qdxe7mVhV/Pk8ug\nWdtvg4VJ6h8RZniDbsybYdMIG1iD5GsI1eS9wGruvlwMtDCWYkm7nH5p+whYwcySG3A3Cg5UmuLu\nlwMXACPNbL1ELyMxf+L3rBC/t5zYuhb85Kw7C664pUwDljezJQs+X3T+uvsId9+ecK1rEnBt7D7d\n3Y9y9y6EA7SrzGzNGEf3gtE0xDeVMF87NBagmXUH/kY47bWCuy9PuI7aMM1NrQvzradmthRhwyt3\nHpUcF2E9aMnPsD4jnCEpHFfDOjUtvk/2a4mphDMCK7r78vGvg7v3LTH8MMJOcy1370A4zfvjdunu\nV7j7AEJ13JNwoDofM1sc+BfwZ2DluLweovwbhr4lnG1oGF97mtiJJUwFupW4waja1pNkvFMIZ26W\nT/wt5e5jCNNc6qe8xaa5cL1KTl9y+FL7vYbhpxLupZmPmW1JWC/2dvfl4vL/ivKWf7F4pxDOeiSn\nfUl3n1bG+IopLMaS+6OmtpXC+M4jnG3sE7eXg5g/jxUOX866nfxMc7dfoPykvpiZLZH4W4RwLfR3\nZraSma0E/IFw7RzCjSyHmtk6MWH8vmB8SxMqxFlmNhA4gOYl6umEU/qNMVK409LdpxJOGZ9vZoub\n2fqEGxj+3vgni47rIsJNJI+ZWc9Erx3NbHMzW4xwvX+Mu5ezM3mWUDGcYmaLmlkdsDNwR+zf6PS7\n+/uE66R/jJ/fIn5+AWa2spntFnd2swkr6JzYb28zWy0O+iVhWc4hnDbsaWb7m9kiZrYv4aalB939\n49j/KjNbLn7/VkW+eqk4vs+AdvEsQJ9E/+nAama2aDLcxLTfTlgX+8WEcx7hkkCp6rexeVZsnW/2\nb27dfQ5hGznXzJaOBy7/y/zbz6/NrEv8xcRpzf2O+D3TCDc/XmJmy5hZOzNbs8R8hrBdfg18Z2br\nAMcQt0szGxDPsDX8JOs/xOVfYLH49xkw18x2IJx+LtebhMp7x/hdvyNcGy/HOMIB0QVmtmTcV20W\n+1XdepJwNXCGmfUGMLMOZrZ37PcgsKqZnRD3T8vEfWqpGH9nZj+JhcUQwmWEBZSx37sOOMfM1rJg\nfTNbgbAO/QB8ZmaLmdkfCPchlGM6sKKZJYe/GjjPzLrFae9oZruWOb4Gyfmwspn9Ou5v9ibsjx6K\n+6PmbCsQpvVbYKaZdWHBg9zCPNWsdbsF2y9QflJ/iLAhN/z9AfgTISG8HP+ej91w90cIN5qMihMy\nJo7nv/H/scDZZjaTkPALV6xiCT7Z7TLgfyw0+HJpiZg98Znk68a+o5T9CUfeHxHurP1DPB1Zatyl\n4sDd/0TYIB6z0FiOE6+DE06r9Sdc42lsfA3jmg3sAuxAuMnnSuAgd3+zzNggHFANIpzy/wPh+nix\n72tHSDwfxji3JOz0AQYAz5rZ14S7hn/t7pM9/ExpZ+Akwk7+ZGBnd/8ifu4gwgHCJMIG8OvC73X3\n1wg3Po0hnP7sQ7jbu8HjhJsQPzazTwqn290fJ6xj/yIsv9UJN+wVTh+Fny2i5DpfYlyFkv1/Rdgh\nvEv4dcRthGu8EM6APEq4bPN8jL3UuJtatw8mJNmGO6fvIpxpKeZkwvowk3B25I5Ev2Vjty8Id+x+\nRrjjfv4vdv+asBzvjMPuT1gnGpNcp78i7B+uI5y5+Ib5T3uWnN54sLQLoYKcEj+3TxymWtcT3P1e\nwvXvO+Jp3omEGxdx928I91zsQjigeZNw7bZUjE8Srvk/Blzk7o81Mmxj+71LCMt4BKESv5ZwY9ej\nhLvz3ySsJ98z/+WjkvPN3ScRDojejfv2ToR9/f3AiJgvxhBu5kyOrynJYcYCaxP2l+cAe7n7jNiv\nsW2lWNx/JNxc+hXwAAtup+cTDqJmmNlvWrhuN2f7Beb9hKZVmdm6hBVxsRZe72o18ejyn8TfmwP7\nuPuXRYabTNjZzQFmu/vAwmFa+P03Ah+4e+HZDBGRVJhZD8IB5CKVtg9uK2Y2hHCD9ZZZx9KaWq0x\nEgvNmS4eTx9eCNxfoSvTacBId+9JOJovdarTgTp3759WQo9y0RiDiIhkrzVbGDuKcEr1bcIp1mMa\nHzwzuzLvlPPNhJ8llNIaCbicU+QiIgur1vczNbGvbZPT75XMzGbEOzQbmmH9ouF9wXDvEq6dzAGu\ncfeKelCCiIhIJu0KtzUzG0nxmwvOTL5xdzezUkc5m7v7NDPrSPhZ2iR3H512rCIiIi1VE0nd3bcr\n1c/CIxA7ufvHZrYqoUWqYuOYFv9/amb3EO7AnC+pN3JAICIijXB33V+UAj21K/xc4pD4+hBCozjz\nib95XSa+Xorwu9uJxUbWWPN91f531llnZR6Dpk/TV2vTVgvTJ+lRUg+tvG1nZm8S2re+AMDMOpvZ\n8DhMJ2C0mb1E+J3jg+4+IpNoRURESqiJ0++N8dAQys+KdP+I8IhY3P1dwtObREREKpYqdSlbXV1d\n1iG0Kk1f9crztEH+p0/SU/M/aUuTmbnmp4hI85gZrhvlUqFKXUREJCeU1EVERHJCSV1ERCQnlNRF\nRERyQkldREQkJ5TURUREckJJXUREJCeU1EVERHJCSV1ERCQnlNRFRERyQkldREQkJ5TURUREckJJ\nXUREJCeU1EVERHJCSV1ERCQnlNRFRERyQkm9BrjDrFlZRyEiIq1NSb0GPPkk9OsHzzyTdSQiItKa\nlNRrwNZbw9lnw957w/HHw9dfZx2RiIi0BiX1GmAWEvorr8C330KfPvDQQ1lHJSIiaTN3zzqG3DAz\nr4b5+dhjcNRRsOmmcOml0LFj1hGJSC0zM9zdso4jD1Sp16Cf/QwmToROnaBvX7jttnAznYiIVDdV\n6imqlko9adw4OOIIWG01GDYMunfPOiIRqTWq1NOjSr3GDRwIzz8Pm20GG20EV1wBc+dmHZWIiLSE\nKvUUVWOlnvT663DkkSGpX3cd9O6ddUQiUgtUqadHlbr8aN114amn4MADYautws/g1GiNiEj1UFKX\n+bRrB8cdBy+8AGPHhlPyY8dmHZWIiJRDSV2K6tYNHnwQzjgDdtsN/vd/w2/cRUSkcimpS0lmsP/+\nodGazz4LjdaMGJF1VCIiUopulEtRtd8o15SHH4Zf/hK22QYuuQRWWCHriEQkD3SjXHpUqUvZdtgh\nVO3LLgvrrQd33qlGa0REKokq9RTlvVJPGjMGDj8c1loLrroqNF4jItISqtTTo0pdWmTTTeHFF2HD\nDaF/f7j6ajVaIyKSNVXqKaqlSj3plVdCU7OLLw7XXgs9e2YdkYhUE1Xq6an5St3M9jazV81sjplt\n2Mhwg81skpm9ZWantmWMla5PH3jmGdhzz9Dc7Pnnw+zZWUclIlJ7aj6pAxOBPYCnSg1gZu2BK4HB\nQG9gfzNbt23Cqw7t28MJJ4R25OvrQ5vy48dnHZWISG2p+aTu7pPc/c0mBhsIvO3uk919NnAHsFvr\nR1d9evSARx4JjdXsuCOccgp8913WUYmI1IaaT+pl6gJMTbz/IHaTIszg4IPh5ZdhyhRYf30YNSrr\nqERE8m+RrANoC2Y2EuhUpNcZ7v5AGaMo++63oUOH/vi6rq6Ourq6cj+aO6usAnfcAQ88EJL84MFw\n0UWw3HJZRyYiWaqvr6e+vj7rMHJJd79HZjYKOMndXyjSbxNgqLsPju9PB+a6+4UFw9Xk3e/l+Oor\nOP10uO++8Mz2PffMOiIRqRS6+z09Ov0+v1Ir1fPA2mbWw8wWA/YF7m+7sKpfhw6hkZo77gjJfa+9\nYNq0rKMSEcmXmk/qZraHmU0FNgGGm9nDsXtnMxsO4O4/AMcDjwKvAf9099ezirmabbklTJgA66wT\nrrVff72amhURSYtOv6dIp9+bZ8KE0NRshw7wt7/BmmtmHZGIZEGn39NT85W6ZKdfP3j22fCgmEGD\n4OKL4Ycfso5KRKR6qVJPkSr1lnvnHTjqqHBD3fXXh4QvIrVBlXp6VKlLRVhzTXjsMTjmGNhuOzjz\nTPjPf7KOSkSkuiipS8UwC9fYJ0yAN94I1fro0VlHJSJSPXT6PUU6/Z6ue+6B44+HXXeFCy+EZZfN\nOiIRaQ06/Z4eVepSsfbYA159Ndw8t956oWU6EREpTZV6ilSpt54nngg30g0YAJdfDiuvnHVEIpIW\nVerpUaUuVeGnPw0PiOnWDfr2hVtuUaM1IiKFVKmnSJV62xg/PtxQ16kTXH11eNyriFQvVerpUaUu\nVWejjeC552DrrcPp+Msugzlzso5KRCR7qtRTpEq97b3xBhx5JMyaFRqtWW+9rCMSkeZSpZ4eVepS\n1Xr1gvp6OPRQqKuDs86C//4366hERLKhpC5Vr107OPpoeOml8LfhhjBmTNZRiYi0PZ1+T5FOv2fP\nHe66C044AfbeG847D5ZeOuuoRKQxOv2eHlXqkitmsM8+8MorMHMm9OkDjzySdVQiIm1DlXqKVKlX\nnhEjwqn5LbaAv/wFVlop64hEpJAq9fSoUpdc2377ULV37Biq9ttvV6M1IpJfqtRTpEq9so0dC0cc\nAd27w7Bh0LVr1hGJCKhST5MqdakZgwaF1ugGDQp3yF91Fcydm3VUIiLpUaWeIlXq1eO110KjNWZw\n3XWwzjpZRyRSu1Spp0eVutSk3r1h9GjYb79wE92558Ls2VlHJSKycFSpp0iVenWaMgV++Uv44IPQ\n1OzGG2cdkUhtUaWeHlXqUvO6dYPhw+HUU2GXXeCkk+Dbb7OOSkSk+ZTURQjX1g88ECZOhI8/hvXX\nhyeeyDoqEZHm0en3FOn0e34MHw7HHBN+537xxbDccllHJJJfOv2eHlXqIkXstFNotGaxxcLjXO+9\nN+uIRESapko9RarU8+mpp0KjNRtsAFdcAausknVEIvmiSj09qtRFmrDVVjBhAqy5ZrjWfvPNampW\nRCqTKvUUqVLPvxdfhMMOg5VXhmuugR49so5IpPqpUk+PKnWRZujfH8aNg222Cb9nv/xymDMn66hE\nRAJV6ilSpV5b3ngjNDX7ww+hqdnevbOOSKQ6qVJPjyp1kRbq1Qvq6+Ggg2DrreGcc2DWrKyjEpFa\npqQushDatQu/Zx8/Hp59FgYMgOeeyzoqEalVSuoiKejWDR58EE47LTQ1+9vfwnffZR2ViNQaJXWR\nlJjBAQeEpmY//DD8/G3UqKyjEpFaUvNJ3cz2NrNXzWyOmW3YyHCTzexlM3vRzMa1ZYxSXTp2hH/8\nAy69FA4+GI46Cr78MuuoRKQW1HxSByYCewBPNTGcA3Xu3t/dB7Z+WFLtdt45NDXbvj306QP33Zd1\nRCKSdzWf1N19kru/Webg+smFNEuHDjBsGNx2G5x8Muy7L0yfnnVUIpJXNZ/Um8GBx8zseTM7Mutg\npLpsvTW8/DKsvnq41n7LLWpqVkTSVxONz5jZSKBTkV5nuPsDcZhRwEnu/kKJcazq7tPMrCMwEviV\nu48uGEaNz0iTxo+Hww+HTp1CU7Pdu2cdkUi21PhMehbJOoC24O7bpTCOafH/p2Z2DzAQGF043NCh\nQ398XVdXR11d3cJ+teTMRhuF37JffHF4PXQoHHts+M27SC2or6+nvr4+6zByqSYq9XLESv1kdx9f\npN+SQHt3/9rMlgJGAH909xEFw6lSl2aZNCk81tU9NDW77rpZRyTS9lSpp6fmawMz28PMpgKbAMPN\n7OHYvbOZDY+DdQJGm9lLwFjgwcKELtIS66wTntd+4IGw5ZZw7rkwe3bWUYlItVKlniJV6rIwpkyB\no4+Gjz6C668PTc6K1AJV6ump+UpdpFJ06wYPPRSamN1pJzjlFDU1KyLNo6QuUkHM4Be/CE3NTp0K\n/fqFJ8GJiJRDp99TpNPvkrb774fjjoMdd4Q//zk0ZiOSNzr9nh5V6iIVbNddQ1OzZqGp2QceyDoi\nEalkVVWpm5kBewJbEFp4Gw3cWynlsSp1aU319XDkkeG37ZdfDiuvnHVEIulQpZ6eaqvUrwKOBl4G\nXomv/5ppRCJtpK4OJkwIN9T17Qt//7uamhWR+VVbpT4J6O3uc+P7dsBr7r5OtpEFqtSlrTz/fGhq\ntksXuPrqkOhFqpUq9fRUW6X+NpDcfXWL3URqyoABIbFvvjlsuCH89a8wd27WUYlI1qqtUn8K2BgY\nR7imPhB4DpgJuLvvmmF4qtQlE6+/HpqabdcOrr02tFInUk1Uqaen2pJ6XbHOhATv7v5k20ZUEIiS\numRk7ly46qrwcJjf/CY0YLPoollHJVIeJfX0VEVSN7ND3P3mIt0XBW519/0yCGsBSuqStfffD03N\nfvwx3HBDODUvUumU1NNTLdfUTzSzo5MdzGxpYDighjRFou7d4eGHQ7W+ww5w6qnw/fdZRyUibaVa\nkvq2wBFmdgKAmXUERgEvuPthmUYmUmHM4OCD4eWXYfLk0NTsk5lemBKRtlIVp98BzKwD8BChwZnd\ngavd/dJso5qfTr9LJbr3Xjj+eNhlF7jwQlh22awjEpmfTr+npyoqdTPbi1Ct/w04EpgITDWzvcxs\nz0yDE6lwu+8empqdMwfWWw8efDDriESktVRFpW5mNxHucId5d7v/yN0PbeuYilGlLpXuiSdCU7OD\nBsFll0HHjllHJKJKPU1VkdSrhZK6VIPvvoOzzoJbboFLLoEDDgjX4UWyoqSeHiX1FCmpSzV57rnQ\n1GzXrqGp2a5ds45IapWSenqq4pq6iKRv441DU7ObbBJ+zz5smJqaFal2qtRTpEpdqtVrr4WmZhdZ\nJDQ126tX1hFJLVGlnp6qSurxLvjCgL8CJrr7JxmENB8ldalmc+aEB8OcfTacfDKcdJKampW2oaSe\nnmpL6sOBTQkNzwDUAS8AqwNnu/stGYUGKKlLPkyeHJqa/eST0NRs//5ZRyR5p6Senmq7pr4osK67\n7+XuewG9CZX7IODUTCMTyYkePeCRR+DEE+HnP4fTT1dTsyLVotqSeld3n554/0ns9jkwK6OYRHLH\nDA45JDQ1+/bbsMEGMHp01lGJSFOqLamPMrPhZnaImQ0B7gfqzWwp4MtsQxPJn06d4K674IILYL/9\n4NhjYebMrKMSkVKq7Zp6O2BPYPPY6RngX5VyIVvX1CXPZswIz2kfMSL8/G2nnbKOSPJC19TTU1VJ\nHcDMOgEbx7djK+Gu9wZK6lILHn8cjjoq/L790kvV1KwsPCX19FTV6Xcz2wcYC+wd/8aZ2d7ZRiVS\nW7bdNlxr79QJ+vaF228HHcuKVIaqqtTN7GXgZw3VeXyu+uPuvn62kQWq1KXWjBsXmprt0SOckl9t\ntawjkmqkSj09VVWpE57Q9mni/eexm4hkYOBAGD8+NDnbv39oQ15NzYpkp9oq9YuAfsA/CMl8X+Bl\ndz8l08AiVepSy159NVTtiy8emprt2TPriKRaqFJPT7UldSPc/b4FodGZ0e5+T7ZRzaOkLrVuzhy4\n4gr405/glFPgN78J7cmLNEZJPT1VldQrnZK6SPDee+EO+S++gOuvD43XiJSipJ6eqkjqZvYNCz7I\npYG7+7JtGU8pSuoi87jDTTfBqafCkUfC738PSyyRdVRSiZTU01MVSb1aKKmLLOjjj+H44+GVV+C6\n62CLLbKOSCqNknp6lNRTpKQuUtrdd8OvfgV77AHnnw/LLJN1RFIplNTTU20/aUudmV1kZq+b2QQz\nu9vMOpQYbrCZTTKzt8xMT4QTaaY99wzV+vffQ58+MHJk1hGJ5E/NV+pmth2hAZu5ZnYBgLufVjBM\ne+AN4GdCSFKSAAAQDklEQVTAh8BzwP7u/nrBcKrURcrw6KPhOvsOO8DFF6tqr3Wq1NNT85W6u490\n94bmMsYCxdrEGgi87e6T3X02cAewW1vFKJI3P/85TJwIP/wQmpp9/PGsIxLJh5pP6gUOAx4q0r0L\nMDXx/oPYTURaqEOH8HO3YcNgyJDwWNdvvsk6KpHqVhNJ3cxGmtnEIn+7JIY5E5jl7v8oMgqdUxdp\nJTvsEKr277+H9deHUaOyjkiketVEW0/uvl1j/c1sCLAjsG2JQT4EuibedyVU6wsYOnToj6/r6uqo\nq6srP1CRGrXccnDjjTB8OBx0EOy+O1xwASy9dNaRSWuor6+nvr4+6zBySTfKmQ0G/g/Y2t0/KzHM\nIoQb5bYFPgLGoRvlRFrFjBlw4onw9NNwww2w9dZZRyStTTfKpUdJ3ewtYDHgi9hpjLsfa2adgWvd\nfac43A7ApUB74Hp3P7/IuJTURVLywAPwy1/CXnuF37UvtVTWEUlrUVJPT80n9TQpqYuk64sv4IQT\nYMyYcHp+yy2zjkhag5J6epTUU6SkLtI67rsPjjkG9tkHzjsPllwy64gkTUrq6amJu99FpLrttlu4\nQ/7TT6Ffv3C9XUQWpEo9RarURVrfPffAccfBfvuF57araq9+qtTTo0pdRKrKHnvAyy/DtGnhOe3/\n/nfWEYlUDlXqKVKlLtK2/vWv8FjXX/wCzj4bfvKTrCOSllClnh5V6iJStfbaK1TtU6ZA//7w7LNZ\nRySSLVXqKVKlLpKdu+4Kz2s/5BD44x9hiSWyjkjKpUo9ParURSQX9t47VO3vvAMbbgjjxmUdkUjb\nU6WeIlXqItlzhzvvhF//Gg47DIYOhcUXzzoqaYwq9fSoUheRXDGDffcNVfsbb4Sq/bnnso5KpG0o\nqYtILq2ySrg7/ne/g513hjPPhP/+N+uoRFqXkrqI5JYZ7L8/TJgAr74KAwbA+PFZRyXSepTURST3\nOnUKLdGddhrsuCP8/vcwa1bWUYmkT0ldRGqCGRx4ILz0UqjcBwyAF17IOiqRdCmpi0hNWXXV8NS3\n3/4WBg+Gs85S1S75oaQuIjXHDA46KFTt48fDwIHhtUi1U1IXkZrVuTM88ACceCJsv31oiW727Kyj\nEmk5JXURqWlmMGQIvPgijB0LgwaF37iLVCMldRERoEsXGD48PPVt223hnHNUtUv1UTOxKVIzsSL5\nMHUqHHkkfPop3Hwz9OmTdUT5pmZi06NKXUSkQNeu8PDDcMwxsM02cO658MMPWUcl0jRV6ilSpS6S\nP1OmwBFHwIwZcNNNsN56WUeUP6rU06NKXUSkEd26waOPhtPxdXVw/vmq2qVyqVJPkSp1kXx7/304\n/HCYOTNU7b17Zx1RPqhST48qdRGRMnXvDiNHhue0b7UVXHihqnapLKrUU6RKXaR2vPdeqNq/+y5U\n7eusk3VE1UuVenpUqYuItMDqq8Njj8HBB8MWW8DFF8OcOVlHJbVOlXqKVKmL1KZ33w2n5GfNghtv\nhF69so6ouqhST48qdRGRhbTGGvDEE3DAAbD55nDJJaraJRuq1FOkSl1E3nkHDj0U5s6FG26Anj2z\njqjyqVJPjyp1EZEUrbkm1NfDPvvAZpvBpZeGBC/SFlSpp0iVuogkvf12qNrNQtW+1lpZR1SZVKmn\nR5W6iEgrWWutULXvuSdssglcfrmqdmldqtRTpEpdREp5881QtS+ySLhDfo01so6ocqhST48qdRGR\nNtCzJzz1FOy2GwwcCFdeqapd0qdKPUWq1EWkHG+8AUOGwBJLhGvtq6+edUTZUqWenpqv1M3sIjN7\n3cwmmNndZtahxHCTzexlM3vRzMa1dZwikh+9esHTT8NOO8HGG8OwYaraJR01X6mb2XbA4+4+18wu\nAHD304oM9x6wkbt/0ci4VKmLSLO8/nqo2pdeGq6/Hnr0yDqitqdKPT01X6m7+0h3bzhGHgus1sjg\nWulEJFXrrgvPPAPbbx+q9muuAdUG0lI1X6knmdkDwO3u/o8i/d4FvgLmANe4+7VFhlGlLiIt9tpr\noWrv0AGuuy486rUWqFJPzyJZB9AWzGwk0KlIrzPc/YE4zJnArGIJPdrc3aeZWUdgpJlNcvfRhQMN\nHTr0x9d1dXXU1dUtbPgiUiN694Z//xsuuggGDIDzzoMjjgiN1+RJfX099fX1WYeRS6rUATMbAhwJ\nbOvu/ylj+LOAb9z9/wq6q1IXkVS88kqo2ldcMVTtXbtmHVHrUaWenpq/pm5mg4HfAruVSuhmtqSZ\nLRNfLwVsD0xsuyhFpNb06QNjxsBWW8GGG4ab6FQzSFNqvlI3s7eAxYCGu9rHuPuxZtYZuNbddzKz\nNYC7Y/9FgNvc/fwi41KlLiKpmzgxVO0rrwzXXgurNXY7bxVSpZ6emk/qaVJSF5HWMns2XHBBaD/+\nz38OST4v19qV1NOjpJ4iJXURaW0TJoSE3rkz/O1v0KVL1hEtPCX19NT8NXURkWrSrx+MGxfaj+/f\nH26+WdfaZR5V6ilSpS4ibemll+CQQ6Bbt9BoTefOWUfUMqrU06NKXUSkSm2wATz3XLg7foMN4NZb\nVbXXOlXqKVKlLiJZeeGFcK199dXh6qth1VWzjqh8qtTTo0pdRCQHNtwwVO19+4aq/bbbVLXXIlXq\nKVKlLiKV4PnnQ9W+9tqhal9llawjapwq9fSoUhcRyZkBA2D8+PAEuPXXh9tvV9VeK1Spp0iVuohU\nmueeC1X7OuvAsGGhVbpKo0o9ParURURybOONQ9W+9tqhar/zzqwjktakSj1FqtRFpJKNHRuq9j59\n4KqroGPHrCMKVKmnR5W6iEiNGDQIXnwx/Oytb1+4666sI5K0qVJPkSp1EakWY8bAoYeGZmf/+ldY\naaXsYlGlnh5V6iIiNWjTTUPV3rVrqNrvvrvpz0jlU6WeIlXqIlKNnnkmVO0bbQRXXgkrrti2369K\nPT2q1EVEatzmm4eHw6y6aqja770364ikpVSpp0iVuohUu6efDlX7wIFw+eVtU7WrUk+PKnUREfnR\nFlvAhAnh527rrw/33591RNIcqtRTpEpdRPLkqadCi3QnndS636NKPT1K6ilSUhcRaT4l9fTo9LuI\niEhOKKmLiIjkhJK6iIhITiipi4iI5ISSuoiISE4oqYuIiOSEkrqIiEhOKKmLiIjkhJK6iIhITiip\ni4iI5ISSuoiISE4oqYuIiOSEkrqIiEhOKKmLiIjkhJK6iIhITtR8Ujezc8xsgpm9ZGaPm1nXEsMN\nNrNJZvaWmZ3a1nGKiIg0peaTOvBnd+/n7hsA9wJnFQ5gZu2BK4HBQG9gfzNbt23DzF59fX3WIbQq\nTV/1yvO0Qf6nT9JT80nd3b9OvF0a+KzIYAOBt919srvPBu4AdmuL+CpJ3ncsmr7qledpg/xPn6Rn\nkawDqARmdi5wEPAdsEmRQboAUxPvPwAGtUFoIiIiZauJSt3MRprZxCJ/uwC4+5nu3g24CfhLkVF4\nW8YrIiLSEuaufNXAzLoBD7l7n4LumwBD3X1wfH86MNfdLywYTjNTRKQF3N2yjiEPav70u5mt7e5v\nxbe7AS8WGex5YG0z6wF8BOwL7F84kFZKERHJUs0ndeB8M+sFzAHeAY4BMLPOwLXuvpO7/2BmxwOP\nAu2B69399cwiFhERKUKn30VERHKiJm6US0NTjc+Y2clm9mL8m2hmP5jZcrHfZDN7OfYb1/bRN62M\n6VvJzB6JjfS8YmZDyv1s1hZy2vKw7JY3s3tiI0tjzWy9cj9bCRZy+ip6+ZnZDWY23cwmNjLM5XHa\nJ5hZ/0T3alh2CzN9Fb3sKpa766+JP8Ip97eBHsCiwEvAuo0MvzPwWOL9e8AKWU/HwkwfMBQ4P75e\nCficcPmmWfOmmqYtR8vuIuD38XWvhnWz0pfdwk5flSy/LYH+wMQS/Xck3LwL4We0z1bLsluY6auG\nZVepf6rUy9PcxmcOAG4v6FbJN9GVM33TgGXj62WBz939hzI/m6WFmbYG1b7s1gVGAbj7G0APM1u5\nzM9mraXT1zHRv2KXn7uPBmY0MsiuwM1x2LHAcmbWiepYdi2dvlUS/St22VUqJfXyFGt8pkuxAc1s\nSeDnwL8SnR14zMyeN7MjWy3Klitn+q4F1jOzj4AJwAnN+GyWFmbaIB/LbgKwJ4CZDQS6A6uV+dms\nLcz0QeUvv6aUmv7OJbpXm8aWb7Uvu0zo7vfyNOduwl2Ap939y0S3zd19WqweRprZpHgEWynKmb4z\ngJfcvc7M1iRMR79WjisNLZ42D00I52HZXQBcZmYvAhMJP9ucU+Zns7Yw0wewhbt/VMHLrxx5r1ZL\nTV8ell2bU6Veng+B5NPbuhKOKIvZj4JT7+4+Lf7/FLiHcOqskpQzfZsBdwG4+zuE61294nDlzpss\nLMy05WLZufvX7n6Yu/d394OBjoSfbzZnvc5KS6fv3djvo/i/UpdfUwqnfzXC9FfDsitHsen7EHKx\n7DKhpF6eHxufMbPFCI3P3F84kJl1ALYC7kt0W9LMlomvlwK2J1QTlaSc6ZsE/AwgXvPqRdhxljVv\nMtTiacvLsjOzDrEf8TTmk+7+TTmfrQAtnr4qWX5NuR84GH5s2fJLd59OdSy7chSdvpwsu0zo9HsZ\nvETjM2Z2dOx/TRx0d+BRd/8+8fFVgHvMDML8vs3dR7Rd9E0rc/rOA240swmEg8FT3P0LgGKfzWI6\nilmYaTOzNYC7c7DsegM3WWjG+BXg8MY+m8V0lLIw00cVbHtmdjuwNbCSmU0lPPp5UQjT5u4PmdmO\nZvY28C1waOxX8csOWj59QCcqfNurVGp8RkREJCd0+l1ERCQnlNRFRERyQkldREQkJ5TURUREckJJ\nXUREJCeU1EVERHJCSV2kChR7hKWZrWBmI83sTTMbYfFRv7Hf6fFxlpPMbPtE940sPBr4LTO7rOA7\nVjWzUTbvEcKfm9m78bV+IyxSBZTURarDjcDggm6nASPdvSfweHyPmfUmtDDWO37mKouteADDgMPd\nfW1Ci2TJcQ4G7o/NrfYntPZ1cny/PSJS8ZTURapAiUdY/vjYyvh/9/h6N+B2d5/t7pMJz90eZGar\nAsu4+7g43C2Jz0B4uuDDBd+R94eJiOSKkrpI9VoltgMOMJ3QLCqEx3ImH+6RfFxnsvuHsTtm1h7o\n5e6TWjViEWlVSuoiOeChveeFafN5EDA2pXBEJCNK6iLVa7qZdYJwkxvwSeze2OM6VyvSHWAHFjz1\nLiJVRkldpHrdDxwSXx8C3Jvovp+ZLWZmqwNrA+Pc/WNgppkNijfOHcS8xwT/FHis7UIXkdagR6+K\nVIEij7D8A3ABcKeZHQ5MBvYBcPfXzOxO4DXgB+BYn/c4xmOBm4CfAA+5+yNm1hH4j7t/W+Sr9RhH\nkSqiR6+K1DgzOxDo4u5/zjoWEVk4SuoiIiI5oWvqIiIiOaGkLiIikhNK6iIiIjmhpC4iIpITSuoi\nIiI5oaQuIiKSE0rqIiIiOfH/AVD524dASlmNAAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x5925a10>" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "The answers are a bit different due to rounding off error in textbook\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13 - pg 361" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Partial pressure\n", "#initialisation of variables\n", "import math\n", "T= 2000 #K\n", "P= 1 #atm\n", "G= 41438 #cal\n", "R= 1.987 #cal/mol K\n", "T2= 298.2 #K\n", "T1= 2000 #K\n", "H= 43200 #cal\n", "#CALCULATIONS\n", "Kp= 10**(-G/(2.303*R*T2))\n", "Kp1= Kp*10**(H*(T-T2)/(2.303*R*T1*T2))\n", "p= math.sqrt(Kp1*0.8*0.2)\n", "#RESULTS\n", "print '%s %.1e %s' % (' Partial pressure of NO =',p,'atm ')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Partial pressure of NO = 7.7e-03 atm \n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15 - pg 368" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Temperature required\n", "#initialisation of variables\n", "G0 = 0 #cal\n", "G= 13200. #cal\n", "T1= 298.2\n", "H1= 23100. #cal\n", "#CALCULATIONS\n", "T= H1/((H1/T1)-(G/T1)+(G0/T1))\n", "#RESULTS\n", "print '%s %.1f %s' % (' Temperature =',T,' K ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Temperature = 695.8 K \n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16 - pg 373" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Equilibrium constant\n", "#initialisation of variables\n", "T= 2000 #K\n", "R= 1.987 #cal /mol K\n", "G= 31160 #cal\n", "#CALULATIONS\n", "Kp= 10**(-G/(2.303*R*T))\n", "#RESULTS\n", "print '%s %.2e' % ('Equilibrium constant =',Kp )\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Equilibrium constant = 3.94e-04\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17 - pg 373" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the fraction of methane decomposed\n", "#initialisation of variables\n", "p= 0.08 #atm\n", "#CALCULATIONS\n", "a= (1-p)/(p+1)\n", "#RESULTS\n", "print '%s %.2f' % ('fraction = ',a)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "fraction = 0.85\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18 - pg 374" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the enthalpy of the reaction\n", "#initialisation of variables\n", "H= -57240. #cal\n", "T= 2257. #C\n", "Hh= -54.60 #cal\n", "Ho= -38.56 #cal\n", "HO= -57.08 #cal\n", "#CALCULATIONS\n", "H1= H-T*(2*Hh-2*Ho-HO)\n", "#RESULTS\n", "print '%s %.1f %s' % (' Enthalpy =',H1,'cal')\n", "print 'The answers in the textbook are a different due to a rounding off error '" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Enthalpy = -113665.0 cal\n", "The answers in the textbook are a different due to a rounding off error \n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19 - pg 375" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Enthalpy\n", "#initialisation of variables\n", "H= -57797 #cal\n", "T= 25 #C\n", "Hh= 7.934 #cal\n", "Ho= -6.788 #cal\n", "HO= 6.912 #cal\n", "#CALCULATIONS\n", "H1= 2*H-(T+273.16)*(2*Hh+2*Ho-HO)\n", "#RESULTS\n", "print '%s %.1f %s' % (' Enthalpy =',H1,'cal ')\n", "print 'The answers in the textbook are a different due to a rounding off error '" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Enthalpy = -114216.5 cal \n", "The answers in the textbook are a different due to a rounding off error \n" ] } ], "prompt_number": 17 } ], "metadata": {} } ] }