{ "metadata": { "name": "", "signature": "sha256:9cfae4f7a986d325f2eab7e6f5652e4123a3be0877578166dbb4520edb5ed59f" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 2 - Structures of Condensed Phases" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1 - pg 74" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the size of cubic unit cell\n", "#initialisation of variables\n", "import math\n", "l= 1.5418 #A\n", "a= 19.076 #degrees\n", "d2= 1.444 #A\n", "#CALCULATIONS\n", "d= l/(2*math.sin(a*math.pi/180.))\n", "a= math.sqrt(8*d2*d2)\n", "#RESULTS\n", "print '%s %.4f %s' % (' size of cubic unit cell =',a,'A')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " size of cubic unit cell = 4.0842 A\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2 - pg 75" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Density of silver\n", "#initialisation of variables\n", "M= 107.88 #gm\n", "z= 4\n", "v= 4.086 #A\n", "N= 6.023*10**23\n", "#CALCULATIONS\n", "d= z*M/(v**3*10**-24*N)\n", "#RESULTS\n", "print '%s %.4f %s' % (' Density of silver =',d,'gm cm^-3')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Density of silver = 10.5025 gm cm^-3\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3 - pg 75" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the molecular weight\n", "#initialisation of variables\n", "d= 1.287 #g cm**-3\n", "a= 123 #A\n", "z= 4\n", "#CALCULATIONS\n", "M= d*6.023*10**23*a**3*10**-24/z\n", "#RESULTS\n", "print '%s %.1e %s' % (' molecular weight =',M,'gm ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " molecular weight = 3.6e+05 gm \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4 - pg 78" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the radius of silver atom\n", "import math\n", "#initialisation of variables\n", "a= 4.086 #A\n", "#CALCULATIONS\n", "d= a*math.sqrt(2)\n", "r= d/4.\n", "#RESULTS\n", "print '%s %.3f %s' % (' radius of silver atom=',r,' A ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " radius of silver atom= 1.445 A \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5 - pg 99" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the surface tension\n", "import math\n", "#initialisation of variables\n", "M= 38.3 #mg cm^-1\n", "d= 13.55 #g cm^-3\n", "p= 0.9982 #g cm^-3\n", "g= 980.7 #cm/sec^2\n", "l= 4.96 #cm\n", "#CALCULATIONS\n", "r= math.sqrt(M*10**-3/(d*math.pi))\n", "R= r*p*g*l/2\n", "#RESULTS\n", "print '%s %.1f %s' % (' surface tension =',R,' ergs cm^-2 ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " surface tension = 72.8 ergs cm^-2 \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6 - pg 103" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the dipole moment of water\n", "#initialisation of variables\n", "import math\n", "r= 1.333\n", "d= 0.9982 #g cm**-3\n", "m= 18.02 #gm\n", "Pm= 74.22 #cc\n", "k= 8.314*10**7 \n", "N= 6.023*10**23\n", "T= 293 #k\n", "#CALCULATIONS\n", "Rm= ((r**2-1)/(r**2+2))*m/d\n", "u= math.sqrt(9*k*T*(Pm-Rm)/(4*math.pi*N**2))\n", "#RESULTS\n", "print '%s %.2e %s' % (' dipole moment of water =',u,'e.s.u ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " dipole moment of water = 1.84e-18 e.s.u \n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7 - pg 103" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the radius of argon atom\n", "#initialisation of variables\n", "a= 1.66*10**-24 #cm**3\n", "#CALCULATIONS\n", "r= a**(1/3.)/10**-8\n", "#RESULTS\n", "print '%s %.2f %s' % (' radius =',r,'A ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " radius = 1.18 A \n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8 - pg 104" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the index of refraction\n", "import math\n", "#initialisation of variables\n", "N= 6.023*10**23 #molecules\n", "a= 10**-24\n", "k= 0.89\n", "cl= 3.60\n", "M= 74.56 #gms\n", "d= 1.989 #g/cm^3\n", "#CACLULATIONS\n", "Rm= 4*math.pi*N*(k+cl)*a/3\n", "r= Rm*d/M\n", "n= math.sqrt((2*r+1)/(1-r))\n", "#RESULTS\n", "print '%s %.3f' % (' index of refraction= ',n)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " index of refraction= 1.516\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9 - pg 104" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the radius of K and Cl atoms\n", "#initialisation of variables\n", "v= 3.6 #cc\n", "v1= 0.89 #cc\n", "s= 3.146 #A\n", "#CALCULATIONS\n", "r= (v/v1)**(1/3.)\n", "r1 = s/(1+r)\n", "r2 = s-r1\n", "#RESULTS\n", "print '%s %.3f %s' % (' radius of k+=',r1,'A ')\n", "print '%s %.3f %s' % (' \\n radius of cl-=',r2,'A ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " radius of k+= 1.213 A \n", " \n", " radius of cl-= 1.933 A \n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10 - pg 107" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the angle of rotation\n", "#initialisation of variables\n", "g= 10 #gm\n", "d= 1.038 #gm/mol\n", "M= 100 #gm\n", "x= 66.412\n", "y= 0.127\n", "z= 0.038\n", "l= 20 #cm\n", "#CALCULATIONS\n", "p= g/(M/d)\n", "X= x+y-z\n", "ar= X*l*p/10.\n", "#RESULTS\n", "print '%s %.2f %s' % (' angle of rotation=',ar,'degrees ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " angle of rotation= 13.81 degrees \n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11 - pg 108" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the viscosity of toluene\n", "#initialisation of variables\n", "t= 68.9 #sec\n", "t1= 102.2 #sec\n", "p1= 0.866 #g/cm^3\n", "p2= 0.998 #gm/cm^3\n", "n= 0.01009 #dynesc/cm^2\n", "#CALCULATIONS\n", "N= n*t*p1/(t1*p2)\n", "#RESULTS\n", "print '%s %.5f %s' % (' viscosity of toluene=',N,'dyne sec/cm^2 ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " viscosity of toluene= 0.00590 dyne sec/cm^2 \n" ] } ], "prompt_number": 11 } ], "metadata": {} } ] }