{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter14 Electromotive Force" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.1,Page no.57" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "dG = -31146.22 cal\n", "dS = -29.98 cal degˆ−1\n", "dH = -40079.66 cal\n" ] } ], "source": [ "import math\n", "#initialisation of variables\n", "n=2.0\n", "V=0.67533 # volt\n", "E=23060 # cal volt ˆ−1\n", "Tc=-6.5*10**-4 # volt degˆ−1\n", "T=25.0 #C\n", "#CALCULATIONS\n", "G=-n*V*E \n", "S=n*E*Tc \n", "H=-n*E*V+n*Tc*E*(273+T)\n", "#RESULTS\n", "G=round(G,2)\n", "S=round(S,2)\n", "H=round(H,2)\n", "print 'dG =',G,'cal'\n", "print 'dS =',S,'cal degˆ−1'\n", "print 'dH =',H,'cal'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.3,Page no.57" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ionic strength of NaCl = 0.01\n", "ionic strength of Li2SO4 = 0.03\n", "ionic strength of CuSO4 = 0.04\n" ] } ], "source": [ "import math\n", "#initialisation of variables\n", "C=0.01 #M\n", "C1=0.02 #M\n", "n=1\n", "n1=2\n", "#CALCULATION\n", "I=0.5*(C*n**2+C**n**2)\n", "I1=0.5*(C1*n**2+C*n1**2) \n", "I2=0.5*(C*n1**2+C*n1**2)\n", "#RESULTS\n", "print 'ionic strength of NaCl =',I\n", "print 'ionic strength of Li2SO4 =',I1\n", "print 'ionic strength of CuSO4 =',I2 " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.4,Page no.58" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "mean ionic activity= 0.796\n" ] } ], "source": [ "import math\n", "#initialisation of variables\n", "C=0.1 #M\n", "V=0.3524 # volt\n", "V1=0.2224 # volt\n", "V2=0.1183 # volt\n", "#CLACULATIONS\n", "r=10**((-V+V1+V2)/V2)\n", "#RESULTS\n", "r=round(r,3)\n", "print 'mean ionic activity=',r" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.5,Page no.58" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "voltage of cell = 0.74 volt\n", "gibbs free energy= -34134.8 cal\n" ] } ], "source": [ "import math\n", "#initialisation of variables\n", "n=2\n", "F=96500 # coloumbs \n", "E=0.337 # volt \n", "E1=-0.403 # volt \n", "#CALCULATIONS \n", "E0=E-E1\n", "G=-n*F*E0/4.184\n", "G=round(G,2)\n", "#RESULTS\n", "print 'voltage of cell =',E0,'volt'\n", "print 'gibbs free energy=',G,'cal'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.6,Page no.59" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "voltage of cell = 0.36 volt\n" ] } ], "source": [ "import math\n", "#initialisation of variables\n", "E=-0.403 # volt \n", "E1=-0.763 # volt \n", "#CALCULATIONS \n", "E0=E-E1 \n", "#RESULTS\n", "print 'voltage of cell =',E0,'volt'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.7,Page no.59" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gibbs free energy = -235945.3 cal\n" ] } ], "source": [ "import math\n", "#initialisation of variables\n", "E=1.360 # volt \n", "E1=0.337 # volt \n", "F=965000 # coloumbs \n", "#CALCULATIONS \n", "G=-F*(E-E1)/4.1840 \n", "#RESULTS\n", "G=round(G,1)\n", "print 'Gibbs free energy =',G,'cal'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.8,Page no.60" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "equilibrium constant = 2.977\n" ] } ], "source": [ "import math\n", "#initialisation of variables\n", "E=-0.126 # volt \n", "E1=-0.140 # volt \n", "n=2.0 \n", "R=0.0591 # volt \n", "#CALCULATIONS \n", "E0=E-E1 \n", "K=10**((E-E1)*n/R) \n", "#RESULTS\n", "K=round(K,3)\n", "print 'equilibrium constant =',K " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.9,Page no.60" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "gibbs free energy = 154.037 cal\n" ] } ], "source": [ "import math\n", "#initialisation of variables\n", "E0=0.0140 # volt \n", "n=2.0 \n", "r=2.0 \n", "V=96500.0 # coloumbs \n", "#CALCULATIONS \n", "E=E0-0.0576*math.log10(n) \n", "G=-n*V*E/4.1840\n", "#RESULTS \n", "G=round(G,3)\n", "print 'gibbs free energy =',G,'cal'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.10,Page no.60" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "electromotive force of the cell = 0.0295 volt\n" ] } ], "source": [ "import math\n", "#initialisation of variables\n", "n=2.0 \n", "R=0.0591 \n", "C=0.01 #M \n", "C1=0.1 #M \n", "#CALCULATIONS \n", "E=-R*math.log10(C/C1)/n \n", "#RESULTS \n", "E=round(E,4)\n", "print 'electromotive force of the cell =',E,' volt'" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [Root]", "language": "python", "name": "Python [Root]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }