{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter13 Irreversible Process In Liquids" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.1,Page no.51" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "number of grams of copper deposited at cathode= 0.0198 gram\n", "volume of oxygen liberated at anode= 0.0039 lit\n" ] } ], "source": [ "import math\n", "#initialisation of variables\n", "t=10.0 #min\n", "i=0.1 #amp\n", "M=63.54 #gm moleˆ−1\n", "n=2.0\n", "F=96500 #amp−sec equivˆ−1\n", "Mo=32.0 #g moleˆ−1\n", "T=25.0 #C\n", "R=0.08205 #l−atm degˆ−1 moleˆ−1 \n", "p=740.0\n", "n1=4.0\n", "#CALCULATIONS\n", "m=t*60*i*M/(F*n)\n", "V=t*60*i*Mo*R*(273+T)*760/(F*n1*Mo*p)\n", "#RESULTS\n", "m=round(m,4)\n", "V=round(V,4)\n", "print 'number of grams of copper deposited at cathode=',m,'gram'\n", "print 'volume of oxygen liberated at anode=',V,'lit' " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.2,Page no.52" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "cell constant= 0.2281 cmˆ−1\n", "specific conductance= 0.0007 ohmˆ−1 cmˆ−1\n" ] } ], "source": [ "import math\n", "#initialisation of variables\n", "r=82.4 #ohms\n", "k= 0.002768 #ohmˆ−1\n", "R1= 326 #ohm\n", "#CALCULATIONS\n", "K= r*k\n", "K1= (K/R1)\n", "#RESULTS \n", "K=round(K,4)\n", "K1=round(K1,4)\n", "print 'cell constant=',K,'cmˆ−1'\n", "print 'specific conductance=',K1,'ohmˆ−1 cmˆ−1'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.3,Page no.52" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "equivalent conductance= 139.94 cmˆ2 equivˆ−1 ohmˆ−1\n" ] } ], "source": [ "import math\n", "#initialisation of variables\n", "C= 0.005 #N \n", "k= 6.997*10** -4 #ohmˆ−1 cmˆ−1 \n", "#CALCULATIONS \n", "A= 1000*k/C \n", "#RESULTS\n", "print 'equivalent conductance=',A,'cmˆ2 equivˆ−1 ohmˆ−1'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.4,Page no.52" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "equivalent conductance of acetic acid= 390.6 cmˆ2 equivˆ−1 ohmˆ−1\n" ] } ], "source": [ "import math\n", "#initialisation of variables\n", "AHcl= 426.1 #cmˆ2 equivˆ−1 ohmˆ−1 \n", "ANaC2H3O2= 91 #cmˆ2 equivˆ−1 ohmˆ−1 \n", "ANaCl= 126.5 #cmˆ2 equivˆ−1 ohmˆ−1 \n", "#CALCULATIONS \n", "AHC2H3O2= AHcl+ANaC2H3O2 -ANaCl \n", "#RESULTS\n", "print 'equivalent conductance of acetic acid=',AHC2H3O2,'cmˆ2 equivˆ−1 ohmˆ−1'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.5,Page no.53" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ionisation constant= 0.0000178\n" ] } ], "source": [ "import math\n", "#initialisation of variables\n", "Ke=48.15 \n", "Ki=390.6 \n", "c=0.001028 #N \n", "#CALCULATIONS \n", "a=Ke/Ki\n", "K=a**2*c/(1-a) \n", "#RESULTS\n", "K=format(K, '.7f')\n", "print 'ionisation constant=',K" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.6,Page no.53" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "electrical field strength= 0.082 volts cmˆ−1\n", "mobility of potassium ion= 0.0007 cmˆ2 volt ˆ−1 cmˆ−1\n" ] } ], "source": [ "import math\n", "#initialisation of variables\n", "i=0.00521 #amp\n", "A=0.23 #cmˆ2\n", "k=0.0129 #ohmˆ−1 cmˆ−1\n", "t=67 #min\n", "l=4.64 #cm\n", "#CALCULATIONS\n", "r=i/(A*k) \n", "uK=l/(t*60*r) \n", "#RESULTS\n", "r=round(R,4)\n", "uK=round(uK,4)\n", "print 'electrical field strength=',r,'volts cmˆ−1'\n", "print 'mobility of potassium ion=',uK,'cmˆ2 volt ˆ−1 cmˆ−1'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.7,Page no.54" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "specific conductance of sodium chloride= 0.0107 ohmˆ−1 cmˆ−1\n" ] } ], "source": [ "import math\n", "#initialisation of variables\n", "C=0.1 #N \n", "F=96500 # coloumbs \n", "mna=42.6*10** -5 #cmˆ2 volt secˆ−1 \n", "mcl=68*10**-5 # cmˆ2 c o l t secˆ−1 \n", "#CALCULATIONS \n", "k=F*(mna+mcl)*C/1000 \n", "#RESULTS\n", "k=round(k,4)\n", "print 'specific conductance of sodium chloride=',k,' ohmˆ−1 cmˆ−1'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.8,Page no.54" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "transference number of chlorine= 0.51\n" ] } ], "source": [ "import math\n", "#initialisation of variables\n", "V=4.9 #faradayˆ−1 \n", "c=0.1 #N \n", "#CALCULATIONS \n", "TK=V*c \n", "Tcl=1-TK \n", "#RESULTS\n", "print 'transference number of chlorine=',Tcl" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.9,Page no.55" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "copper transference number= 0.72\n" ] } ], "source": [ "import math\n", "#initialisation of variables\n", "Mc=63.54 #gms\n", "n=2.0\n", "mc=0.3 #gms\n", "mc1=1.43\n", "mc2=1.2140\n", "#CALCULATIONS\n", "Me=Mc/n \n", "Tc=((mc/Me)-((mc1 -mc2)/Me))/(mc/Me)\n", "Ta=1-Tc\n", "#RESULTS\n", "print 'copper transference number=',Ta" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.10,Page no.55" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "A0 for acetic acid= 390.352\n" ] } ], "source": [ "import math\n", "#initialisation of variables\n", "Tn=0.820\n", "Tn1=0.450\n", "A=426.1\n", "A1=91\n", "#CALCULATIONS\n", "l=Tn*A\n", "l1=Tn1*A1 \n", "L=l+l1 \n", "#RESULTS \n", "print 'A0 for acetic acid=',L" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.11,Page no.56" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "limiting diffusion cooeficient= 0.00001979 cmˆ2 secˆ−1\n" ] } ], "source": [ "import math\n", "#initialisation of variables\n", "T=25.0 #C\n", "n=2.0\n", "F=96500.0 # coloumbs\n", "R=8.316 #J moleˆ−1 Kˆ−1\n", "a=76.2*10 -5\n", "a1=79*10**-5\n", "A=155.2*10** -5 \n", "#CALCULATIONS \n", "D0=n*a*a1*R*(273+T)*10**-6/(F*A)\n", "#RESULTS\n", "print 'limiting diffusion cooeficient=',format(D0, '.8f'),'cmˆ2 secˆ−1'" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [Root]", "language": "python", "name": "Python [Root]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }