{ "metadata": { "name": "", "signature": "sha256:3529f6dd0800b2bdaab8573a3a6af2c519dc83ab93935a987777c3348bc812ea" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 7 - Electrochemistry" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1 - pg 391" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Avagadro number\n", "#initialisation of variables\n", "e= 1.6016*10**-19 #coloumb\n", "F= 96493 #\n", "#CALCULATIONS\n", "N= F/e\n", "#RESULTS\n", "print '%s %.4e %s' % (' Avagadro number = ',N,'molecules/mol')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Avagadro number = 6.0248e+23 molecules/mol\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2 - pg 391" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Time required\n", "#initialisation of variables\n", "m= 1 #gms\n", "M= 63.54 #gms\n", "e= 2 #farady\n", "F= 96493\n", "n= 3\n", "#CALCULATIONS\n", "t= (m/M)*(e*F/n)\n", "#RESULTS\n", "print '%s %d %s' % (' Time =',t,'sec')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Time = 1012 sec\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3 - pg 396" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the transference number\n", "#initialisation of variables\n", "M= 25.01 #gms\n", "n= 1.0053 #moles\n", "n1= 6.6*10**-5 #moles\n", "e= 1.350*10**-3 #coloumbs\n", "#CALCULATIONS\n", "x= M/n\n", "y= n1*x\n", "nm= y*10**3+e*10**3-(x/10)\n", "t= nm/(e*10**3)\n", "#CALCULATIONS\n", "print '%s %.3f' % (' transference number = ',t)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " transference number = 0.373\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5 - pg 404" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the electrokinetic potential\n", "#initialisation of variables\n", "import math\n", "x= 0.033 #cm\n", "t= 38.2 #sec\n", "e= 3.2 #v\n", "V= 9*10**-3 #dyne sec cm**-2\n", "k= 78\n", "#CALCULATIONS\n", "v= x/t\n", "u= v/e\n", "S= -300**2*u*V*4*math.pi/k\n", "#RESULTS\n", "print '%s %.3f %s' % (' electrokinetic potential =',S,' volt ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " electrokinetic potential = -0.035 volt \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6 - pg 406" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the specific conductivity\n", "#initialisation of variables\n", "o= 0.999505 #mho cm^-1\n", "k= 0.0128560\n", "i= 97.36 #ohms\n", "I= 117.18 #ohms\n", "#CALCULATIONS\n", "Lsp= k*o\n", "L1sp= k*i/I\n", "#RESULTS\n", "print '%s %.6f %s' % (' specific conductivity =',L1sp,'mho cm^-1 ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " specific conductivity = 0.010682 mho cm^-1 \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7 - pg 410" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the equivalent conductance of the anion at infinite dilution\n", "#initialisation of variables\n", "A= 388.5\n", "l= 349.8\n", "a= 0.61\n", "m= 0.1 #M\n", "#CALCULATIONS\n", "L= A-l\n", "A1= a*A\n", "Lsp= m*A1/1000.\n", "#RESULTS\n", "print '%s %.2e %s' % (' equivalent conductance of the anion at infinite dilution =',Lsp,' mho cm^-1 ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " equivalent conductance of the anion at infinite dilution = 2.37e-02 mho cm^-1 \n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8 - pg 410" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the effective mobility\n", "#initialisation of variables\n", "l= 349.82 \n", "F= 96493.1 #coloumb\n", "#CALCULATIONS\n", "u= l/F\n", "#RESULTS\n", "print '%s %.3e %s' % (' effective mobility =',u,'cm^2 volt sec^-1 ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " effective mobility = 3.625e-03 cm^2 volt sec^-1 \n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9 - pg 413" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the solubility product constant\n", "#initialisation of variables\n", "G1= -7800 #cal\n", "G2= -24600 #cal\n", "G3= -39700 #cal\n", "R= 1.987 #cal/mol K\n", "T= 25 #C\n", "#CALCULATIONS\n", "G= G1+G2-G3\n", "Ksp= 10**(-G/(2.303*R*(273.2+T)))\n", "#RESULTS\n", "print '%s %.1e' % (' solubility product constant = ',Ksp)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " solubility product constant = 4.5e-06\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11 - pg 417" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the concentration of hydrogen ion\n", "#initialisation of variables\n", "import math\n", "Ka= 6*10**-10\n", "C= 10**-1 #moles l^-1\n", "#CALCULATIONS\n", "C1= math.sqrt(Ka*C)\n", "#RESULTS\n", "print '%s %.1e %s' % (' concentration of hydrogen ion =',C1,'moles l^-1 ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " concentration of hydrogen ion = 7.7e-06 moles l^-1 \n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13 - pg 419" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the concentration of hydrogen ion\n", "#initialisation of variables\n", "Ka= 1.8*10**-5 \n", "n= 2 #milli moles\n", "v= 45 #ml\n", "n1= 0.5#milli moles\n", "#CALCULATIONS\n", "x= Ka*v*n1/n\n", "C= x/v\n", "#RESULTS\n", "print '%s %.1e %s' % (' concentration of hydrogen ion =',C,' moles l^-1 ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " concentration of hydrogen ion = 4.5e-06 moles l^-1 \n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14 - pg 421" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the pH of the solution and activity coefficient\n", "#initialisation of variables\n", "import math\n", "a= 2.4*10**-4\n", "Ph= 11.54\n", "#CALCULATIONS\n", "Ph1= -math.log10(a)\n", "a= 10**(-Ph)\n", "#RESULTS\n", "print '%s %.2f' % (' pH of solution = ',Ph1)\n", "print '%s %.1e' % (' \\n activity coefficient = ',a)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " pH of solution = 3.62\n", " \n", " activity coefficient = 2.9e-12\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15 - pg 426" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Gibbs free energy\n", "#initialisation of variables\n", "E= 0.35240 #volts\n", "F= 96493.1 #coloumb\n", "n= 2 #electrons\n", "#CALCULATIONS\n", "G= -n*F*E\n", "#RESULTS\n", "print '%s %d %s' % (' Gibbs free energy =',G,' absolute joules ')\n", "print 'The answer is a bit different due to rounding off error in textbook'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Gibbs free energy = -68008 absolute joules \n", "The answer is a bit different due to rounding off error in textbook\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16 - pg 428" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Entropy and Enthalpy of the mixture\n", "#initialisation of variables\n", "E= 0.35240 #volts\n", "E1= 0.35321 #volts\n", "E2= 0.35140 #volts\n", "E3=.35252\n", "T= 25. #C\n", "T1= 20. #C\n", "T2= 30. #C\n", "n= 2. #electrons\n", "F= 96493.1 #coloumb\n", "#CALCULATIONS\n", "r= (E-E1)/(T-T1)\n", "r1= (E2-E)/(T2-T)\n", "R= (r+r1)/2\n", "S= n*F*R\n", "H= n*F*((273.16+T)*R-E3)\n", "#RESULTS\n", "print '%s %.1f %s' % (' Entropy =',S,'joules deg^-1')\n", "print '%s %.1f %s' % (' \\n Enthalpy =',H,'joules')\n", "print 'The answer is a bit different due to rounding off error in textbook'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Entropy = -34.9 joules deg^-1\n", " \n", " Enthalpy = -78446.4 joules\n", "The answer is a bit different due to rounding off error in textbook\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18 - pg 431" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Gibbs free energy\n", "#initialisation of variables\n", "import math\n", "v= 0.11834 #volt\n", "F= 96493.1 #coloumb\n", "n= 1 #electron\n", "R= 8.3144 #J/mol K\n", "T= 25 #C\n", "m= 0.1\n", "m1= 0.9862\n", "#CALCULATIONS\n", "G= -n*F*v\n", "G1= 2*R*(273.16+T)*math.log(m/m1)\n", "#RESULTS\n", "print '%s %.1f %s' % (' Gibbs free energy =',G,'joules')\n", "print '%s %d %s' % (' \\n Gibbs free energy =',G1,'joules')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Gibbs free energy = -11419.0 joules\n", " \n", " Gibbs free energy = -11347 joules\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19 - pg 432" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the potential difference\n", "#initialisation of variables\n", "import math\n", "n= 2 #electrons\n", "R= 8.314 #bJ/mol K\n", "F= 96493 #coloumb\n", "T= 25 #C\n", "N2= 3.17*10**-6\n", "N1= 6.13*10**-3\n", "#CALCULATIONS\n", "E= -(R*(273.16+T)*2.3026/(n*F))*math.log10(N2/N1)\n", "#RESULTS\n", "print '%s %.5f %s' % (' potential difference =',E,' volt')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " potential difference = 0.09720 volt\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 20 - pg 432" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Equilibrium constant\n", "#initialisation of variables\n", "import math\n", "E= 0.84 #volts\n", "n= 1 #electron\n", "F= 96500 #coloumb\n", "R= 8.314 #J/mol K\n", "T= 25 #C\n", "#CALCULATIONS\n", "K= math.e**(E*n*F/(R*(273+T)))\n", "#RESULTS\n", "print '%s %.1e' % (' Equilibrium constant =',K)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Equilibrium constant = 1.6e+14\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 21 - pg 432" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Equilibrium constant\n", "#initialisation of variables\n", "import math\n", "E= -0.0029 #volts\n", "V= 0.1 #volts\n", "V1= 0.05 #volts\n", "f= 0.05916 #J/mol coloumb\n", "T= 25. #C\n", "F= 96500 #coloumb\n", "R= 8.314 #J/mol K\n", "#CALCULATIONS \n", "e= E+f*math.log10(V*V1/V1)\n", "K= math.e**(e*F/(R*(273+T)))\n", "#RESULTS\n", "print '%s %.1e' % (' Equilibrium constant =',K)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Equilibrium constant = 8.9e-02\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 22 - pg 438" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Standard electrode potential\n", "#initialisation of variables\n", "import math\n", "E= 1.0508 #volts\n", "V= 0.3338 #volts\n", "a= 0.0796 \n", "a1= math.sqrt(0.0490)\n", "f= 0.05916 #J/mol coloumb\n", "#CALCULATIONS\n", "V= E+V+f*math.log10(a/a1)\n", "#RESULTS\n", "print '%s %.4f %s' % (' Standard electrode potential =',V,'volts')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Standard electrode potential = 1.3583 volts\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 23 - pg 438" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Standard molar free energy\n", "#initialisation of variables\n", "V= 1.3595 #volts\n", "n= 1 #electron\n", "F= 96493 #coloumb\n", "#CALCULATIONS\n", "G= -n*F*V/4.28\n", "#RESULTS\n", "print '%s %.1f %s' % (' Standard molar free energy =',G,'cal')\n", "print 'The answer is a bit different due to rounding off error in textbook'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Standard molar free energy = -30650.1 cal\n", "The answer is a bit different due to rounding off error in textbook\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 24 - pg 439" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the ion product\n", "#Initialization of variables\n", "import math\n", "I=0.0050\n", "E0=.22619\n", "con=.0602\n", "E2=1.05080\n", "R=8.3144\n", "T=298.16 #K\n", "#calculations\n", "E1=E0-con*math.sqrt(I)\n", "E3=-E2+E1\n", "Kw=10**(E3*96493/2.3026/R/T)\n", "#results\n", "print '%s %.3e' %(\"Ion product = \",Kw)\n", "print 'The answer is a bit different due to rounding off error in textbook'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ion product = 9.741e-15\n", "The answer is a bit different due to rounding off error in textbook\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 25 - pg 440" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Solubility constant\n", "#initialisation of variables\n", "V= -0.658 #volt\n", "V1= -0.3363 #volt\n", "n= 1 #electron\n", "F= 96438 #coloumb\n", "R= 8.314 #j/mol K\n", "T= 25 #C\n", "#CLACULATIONS\n", "V2= V-V1\n", "Ksp= 10**(V2*n*F/(2.303*R*(273.2+T)))\n", "#RESULTS\n", "print '%s %.1e %s' % (' Solubility constant =',Ksp,' volt')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Solubility constant = 3.7e-06 volt\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 26 - pg 440" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the cell potential\n", "#initialisation of variables\n", "import math\n", "e= 0\n", "e1= -0.37\n", "k= -0.05916 #j/mol\n", "a= 0.02\n", "a1= 0.01\n", "a3=.2\n", "p= 730. #mm of Hg\n", "#CALCULATIONS\n", "E= (e-e1)+k*math.log10(a*math.sqrt(p/760.) /a1/a3)\n", "#RESULTS\n", "print '%s %.2f %s' % (' cell potential =',E,'volt') \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " cell potential = 0.31 volt\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 27 - pg 440" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the cell potential\n", "#initialisation of variables\n", "V= -0.440 #volt\n", "V1= 0.771 #volt\n", "F= 96500 #coloumb\n", "n=2 #electrons\n", "n1= 1 #electrons\n", "n2= 3 #electrons\n", "#CALCULATIONS\n", "G= -n*F*V\n", "G1= -n1*F*V1\n", "G2= G+G1\n", "V= G2/(n2*F)\n", "#RESULTS\n", "print '%s %.4f %s' % (' cell potential =',-V,'volt') \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " cell potential = -0.0363 volt\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 28 - pg 444" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the cell potential\n", "#initialisation of variables\n", "import math\n", "p1=386.6 #atm\n", "p2=1 #atm\n", "f= 2\n", "k= -0.05916 #j/mol\n", "#CALCULATIONS\n", "E= (k/f)*math.log10(p1/p2)\n", "#RESULTS\n", "print '%s %.4f %s' % (' cell potential =',E,'volt')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " cell potential = -0.0765 volt\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 29 - pg 445" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the cell potential\n", "#initialisation of variables\n", "import math\n", "c= 10**-7\n", "c1= 1\n", "f= 1\n", "k= -0.05915 #j/mol\n", "#CALCULATIONS\n", "E= (k/f)*math.log10(c/c1)\n", "#RESULTS\n", "print '%s %.5f %s' % (' cell potential =',E,' volt')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " cell potential = 0.41405 volt\n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 30 - pg 448" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the junction potential\n", "#initialisation of variables\n", "import math\n", "c= 391.\n", "c1= 129.\n", "f= 1.\n", "k= -0.05915 #j/mol\n", "#CALCULATIONS\n", "E= (k/f)*math.log10(c1/c)\n", "#RESULS\n", "print '%s %.4f %s' % (' junction potential =',E,'volt')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " junction potential = 0.0285 volt\n" ] } ], "prompt_number": 26 } ], "metadata": {} } ] }