{ "metadata": { "name": "", "signature": "sha256:a8663b753e53365cf46aa7f5948fd23b365bccc405a9c5b9305fa79e49b0f6dc" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 10 - Chemical Kinetics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1 - pg 543" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Pressure \n", "#initialisation of variables\n", "t= 3 #sec\n", "P0= 200 #mm\n", "k= 17.3 #mm/sec\n", "P1= 104 #mm\n", "#CALCULATIONS\n", "P= P0-k*t\n", "P2= P+P1\n", "#RESULTS\n", "print '%s %d %s' % (' Pressure=',P2,' mm of Hg')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Pressure= 252 mm of Hg\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2 - pg 545" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Half time\n", "#initialisation of variables\n", "k= 2.63*10**-3 #min^-1\n", "#CALCULATIONS\n", "t1= 0.693/k\n", "#RESULTS\n", "print '%s %.1f %s' % (' Half time=',t1,'min')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Half time= 263.5 min\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3 - pg 546" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Partial Pressure of the reactant\n", "#initialisation of variables\n", "P= 200. #mm\n", "t= 30. #min\n", "k= 2.5*10**-4 #sec^-1\n", "#CALCULATIONS\n", "P0= P/(10**(k*t*60/2.303))\n", "P1= P-P0\n", "#RESULTS\n", "print '%s %d %s' % (' Partial Pressure of reactant=',P1,'mm of Hg')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Partial Pressure of reactant= 72 mm of Hg\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4 - pg 548" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the no of atoms\n", "#initialisation of variables\n", "t= 5600*365*24*60.\n", "x= 5 #atoms\n", "#CALCULATIONS\n", "k= 0.693/t\n", "N= x/k\n", "#RESULTS\n", "print '%s %.2e %s' % (' No of atoms=',N, 'atoms')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " No of atoms= 2.12e+10 atoms\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5 - pg 548" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the time passed\n", "#initialisation of variables\n", "import math\n", "t= 5600 #sec\n", "r= 0.256\n", "#CALCULATIONS\n", "t1= (t/0.693)*2.303*math.log10(1/r)\n", "#RESULTS\n", "print '%s %d %s' % (' Time=',t1,'years ago')\n", "print 'The answer is a bit different due to rounding off error in textbook'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Time= 11012 years ago\n", "The answer is a bit different due to rounding off error in textbook\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6 - pg 549" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the first order rate constant and half life\n", "#initialisation of variables\n", "import math\n", "t= 25.1 #hr\n", "C= 0.004366 \n", "C1= 0.002192\n", "C2= 0.006649\n", "#CALCULATIONS\n", "r= (C-C1)/(C2-C1)\n", "k= 2.303*math.log10(1/r)/t\n", "t1= 0.693/k\n", "#RESULTS\n", "print '%s %.1f %s' %(' Time=',t1,' hr')\n", "print '%s %.2e %s' %(' Time=',k,' hr')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Time= 24.2 hr\n", " Time= 2.86e-02 hr\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7 - pg 552" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Rate constant\n", "#initialisation of variables\n", "s= 18.6*10**4 #mm of hg\n", "#CALCULATIONS\n", "k= 1./s\n", "#RESULTS\n", "print '%s %.2e %s' % (' Rate constant=',k,' (mm Hg)^-1 sec^-1')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Rate constant= 5.38e-06 (mm Hg)^-1 sec^-1\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8 - pg 552" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the requried Pressure\n", "#initialisation of variables\n", "k= 1.14*10**-4 #sec^-1\n", "k1= 5.38*10**-6 #sec^-1\n", "#CALCULATIONS\n", "P= k/k1\n", "P2=0.01*P\n", "#RESULTS\n", "print '%s %.3f %s' % (' Pressure=',P2,'mm of Hg')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Pressure= 0.212 mm of Hg\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9 - pg 555" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the no of molecules\n", "#initialisation of variables\n", "T= 600 #K\n", "P= 1 #atm\n", "R= 0.082 #atm lit/mol K\n", "#CALCULATIONS\n", "C= P/(R*T)\n", "r= C**2*4*10**-6 \n", "r1= 6*10**23*r\n", "#RESULTS\n", "print '%s %.1e %s' % (' No of molecules=',r1,'molecules l^-1 sec^-1')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " No of molecules= 9.9e+14 molecules l^-1 sec^-1\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10 - pg 555" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the time required\n", "#initialisation of variables\n", "k= 6.3*10**2 #ml mole^-1 sec^-1\n", "P= 400. #mm\n", "T= 600. #K\n", "R= 82.06\n", "#CALCULATIONS\n", "C= (P/760.)/(R*T)\n", "t= 1/(9.*C*k)\n", "#RESULTS\n", "print '%s %.1f %s' % (' time=',t,' sec')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " time= 16.5 sec\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11 - pg 556" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the pressure of No2 in both cases\n", "#initialisation of variables\n", "pf2= 2.00 #mm Hg\n", "y= 0.96 #mm Hg\n", "Pn= 5 #mm Hg\n", "#CALCULATIONS\n", "pF2= pf2-y\n", "pNO2= Pn-2*y\n", "pNO2F= 2*y\n", "#RESULTS\n", "print '%s %.2f %s' % (' pressure of NO2=',pNO2,'mm of Hg')\n", "print '%s %.2f %s' % (' \\n pressure of NO2 after 30 sec=',pNO2F,'mm of Hg')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " pressure of NO2= 3.08 mm of Hg\n", " \n", " pressure of NO2 after 30 sec= 1.92 mm of Hg\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13 - pg 561" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Rate constant\n", "#initialisation of variables\n", "k= 4*10**-6 #mol^-1 sec^-1\n", "Kc= 73\n", "#CALCULATIONS\n", "K1= k*Kc/2\n", "#RESULTS\n", "print '%s %.2e %s' % (' Rate constant=',K1,'l mol^-1 sec^-1')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Rate constant= 1.46e-04 l mol^-1 sec^-1\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14 - pg 568" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the activation energy\n", "#initialisation of variables\n", "import math\n", "R= 1.987 #atm lit/mol K\n", "T= 573.2 #K\n", "T1= 594.6 #K\n", "k= 3.95*10**-6 #mol^-1 sec^-1\n", "k1= 1.07*10**-6 #mol^-1 sec^-1\n", "#CALCULATIONS\n", "H= R*T*T1*2.303*math.log10((k/k1))/(T1-T)\n", "#RESULTS\n", "print '%s %d %s' %(' activation energy=',H,'calmol^-1')\n", "print 'The answers in the texbook are a bit different due to rounding off error'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " activation energy= 41338 calmol^-1\n", "The answers in the texbook are a bit different due to rounding off error\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15 - pg 568" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the time required\n", "#initialisation of variables\n", "import math\n", "H= 41300. #cal\n", "T= 673. #K\n", "T1= 595. #K\n", "R= 1.987 #cal/mol K\n", "K= 3.95*10**-6\n", "P= 1 #atm\n", "R1= 0.08205 #j/mol K\n", "#CALCULATIONS\n", "k2= math.e**(H*(T-T1)/(R*T*T1))*K\n", "C= P/(R1*T)\n", "t= 44.8/C\n", "t2=R1*T*10**-2 /k2\n", "#RESULTS\n", "print '%s %d %s' %(' time =',t,'sec')\n", "print '%s %d %s' %('Time required in case 2 = ',t2,'sec')\n", "print 'The answers in the texbook are a bit different due to rounding off error'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " time = 2473 sec\n", "Time required in case 2 = 2438 sec\n", "The answers in the texbook are a bit different due to rounding off error\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16 - pg 569" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the collision diameter\n", "#initialisation of variables\n", "import math\n", "H= 41300.\n", "R= 1.987 #atm lit/mol K\n", "T= 595. #K\n", "M= 128. #gm\n", "R1= 8.314*10**7 #atm lit/mol K\n", "N= 6.02*10**23 #moleccules\n", "k= 3.95*10**-6 #sec**-1\n", "#CALCULATIONS\n", "s= math.sqrt((k*10**3/(4*N))*(128/(math.pi*R1*T))**0.5*math.e**(H/(R*T)))\n", "#RESULTS\n", "print '%s %.3e %s' % (' collision diameter=',s,' cm')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " collision diameter= 8.356e-09 cm\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18 - pg 577" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Concentration of A and B\n", "#initialisation of variables\n", "import math\n", "import numpy\n", "from numpy import linalg\n", "p= 20.3 #percent\n", "p1= 1.77 #percent\n", "I= 100.\n", "n= 2.\n", "l= 300. #l mol^-1 cm^-1\n", "l1= 30. #l mol^-1 cm^-1\n", "l2= 10. #l mol^-1 cm^-1\n", "l3= 200. #l mol^-1 cm^-1\n", "#CALCULATIONS\n", "A= ([[n*l, n*l1],[n*l2, n*l3]])\n", "b= ([[math.log10(I/p1)],[math.log10(I/p)]])\n", "c= numpy.dot(numpy.linalg.inv(A),b)\n", "R1=c[0]\n", "R2=c[1]\n", "#RESULTS\n", "print '%s %.2e %s' % (' Concentration of A =',R1,' mole l^-1')\n", "print '%s %.2e %s' % (' \\n Concentration of B =',R2,' mole l^-1')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Concentration of A = 2.76e-03 mole l^-1\n", " \n", " Concentration of B = 1.59e-03 mole l^-1\n" ] } ], "prompt_number": 18 } ], "metadata": {} } ] }