{ "metadata": { "name": "", "signature": "sha256:1833f0f72d4fcfdfc05d274c870f8929bea706e80b14f9268d3407df8540de4d" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 1 - Kinetic theory of gases and equations of state" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1 - Pg 5" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the final volume of the gas\n", "#initialisation of variables\n", "V= 22.394 #l\n", "m= 32 #gm\n", "T= 0 #C\n", "T1= 50. #C\n", "p= .8 #atm\n", "#CALCULATIONS\n", "V1= (T1+273.16)*V/(T+273.16)\n", "V2= (1./p)*V1\n", "#RESULTS\n", "print '%s %.3f %s' % (' Volume = ',V2,'lt')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Volume = 33.116 lt\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2 - Pg 7" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate gthe argon temperature\n", "#initialisation of variables\n", "P= 1 #atm\n", "T= 0 #C\n", "#CALCULATIONS\n", "T1= 10*(T+273.2)\n", "#RESULTS\n", "print '%s %.1f %s' %(' Argon temperature =',T1,' K')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Argon temperature = 2732.0 K\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3 - Pg 9" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Atomic Weight\n", "#initialisation of variables\n", "x= 0.0820544\n", "T= 0 #C\n", "l= 1.7826 #gl^-1atm^-1\n", "#CALCULATIONS\n", "M= x*(273.16+T)*l\n", "#RESULTS\n", "print '%s %.3f %s' % (' Atomic Weight =',M,'gm mole^-1')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Atomic Weight = 39.955 gm mole^-1\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4 - Pg 11" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Molecular weight and molecular formula\n", "#initialisation of variables\n", "g=.270 #g\n", "R=0.08205\n", "T=296.4 #K\n", "P=754.6/760.0 #atm\n", "V=0.03576 #lt\n", "m1= 12\n", "m2= 19\n", "m3= 35.46\n", "yx=.57\n", "#CALCULATIONS\n", "M1=g*R*T/(P*V)\n", "y=round(yx*M1/m3)\n", "n=round((M1-m3*y+m2)/(2*m2+m1))\n", "x=2*n-1\n", "M= n*m1+x*m2+y*m3\n", "#RESULTS\n", "print '%s %.2f %s' %('Approximate molecular weight = ',M1,\"gms\")\n", "print '%s %.2f %s' % (' Molecular weight =',M,' gms')\n", "print '%s %d %s %d %s %d' %('Molecular formula is C',n,'F',x,'Cl',y)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Approximate molecular weight = 184.94 gms\n", " Molecular weight = 187.38 gms\n", "Molecular formula is C 2 F 3 Cl 3\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5 - Pg 14" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the pressure in both cases\n", "#initialisation of variables\n", "n= 10 #moles\n", "R= 0.08205 #atml/molK\n", "T= 300 #K\n", "V= 4.86 #l\n", "b= 0.0643 #ml mol**-1\n", "a= 5.44 #l**2\n", "#CALCULATIONS\n", "P= n*R*T/V\n", "P1= (n*R*T/(V-n*b))-(a*n**2/V**2)\n", "#RESULTS\n", "print '%s %.1f %s' % (' Pressure in case of perfect gas law=',P,' atm')\n", "print '%s %.1f %s' % (' \\n Pressure in case of vanderwaals equation =',P1,' atm')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Pressure in case of perfect gas law= 50.6 atm\n", " \n", " Pressure in case of vanderwaals equation = 35.3 atm\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6 - Pg 20" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the pressure of the gas\n", "#initialisation of variables\n", "n= 10 #moles\n", "T= 300 #K\n", "V= 4.86 #l\n", "R= 0.08205 #atml/molK\n", "v= 0.1417 #l\n", "T1= 305.7 #K\n", "#CALCULATIONS\n", "b= v/2\n", "a= 2*v*R*T1\n", "P= ((n*R*T)/(V-n*b))*2.71**(-a*n/(V*R*T))\n", "#RESULTS\n", "print '%s %.1f %s' % (' Pressure =',P,' atm')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Pressure = 32.8 atm\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7 - Pg 23" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the root mean square velocity\n", "#initialisation of variables\n", "import math\n", "from math import sqrt\n", "T= 0 #C\n", "T1= 100 #C\n", "R= 8.314 #atm lit/mol K\n", "n= 3\n", "M= 2.016 #gm\n", "M1= 28.02 #gm\n", "M2= 146.1 #gm\n", "#CALCULATIONS\n", "u= sqrt(n*R*10**7*(T+273.2)/M)\n", "u1= sqrt(n*R*10**7*(T+273.2)/M1)\n", "u2= sqrt(n*R*10**7*(T+273.2)/M2)\n", "u3= sqrt(n*R*10**7*(T1+273.2)/M)\n", "u4= sqrt(n*R*10**7*(T1+273.2)/M1)\n", "u5= sqrt(n*R*10**7*(T1+273.2)/M2)\n", "#RESULTS\n", "print '%s %.2f %s' % (' root mean square velocity of H2 at 0 C =',u*10**-4,' cm/sec')\n", "print '%s %.3f %s' % (' \\n root mean square velocity of N2 at 0 C=',u1*10**-4,' cm/sec')\n", "print '%s %.3f %s' % (' \\n root mean square velocity of SF6 at 0 C =',u2*10**-4,'cm/sec')\n", "print '%s %.2f %s' % (' \\n root mean square velocity of H2 at 100 C =',u3*10**-4,' cm/sec')\n", "print '%s %.3f %s' % (' \\n root mean square velocity of N2 at 100 C =',u4*10**-4,' cm/sec')\n", "print '%s %.3f %s' % (' \\n root mean square velocity of SF6 at 100 C =',u5*10**-4,' cm/sec')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " root mean square velocity of H2 at 0 C = 18.38 cm/sec\n", " \n", " root mean square velocity of N2 at 0 C= 4.931 cm/sec\n", " \n", " root mean square velocity of SF6 at 0 C = 2.160 cm/sec\n", " \n", " root mean square velocity of H2 at 100 C = 21.49 cm/sec\n", " \n", " root mean square velocity of N2 at 100 C = 5.764 cm/sec\n", " \n", " root mean square velocity of SF6 at 100 C = 2.524 cm/sec\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9 - Pg 34" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the no. of collisions in He and N2\n", "#Initialisation of variables\n", "import math\n", "from math import sqrt\n", "P= 1 #at,\n", "T= 300 #K\n", "R= 82.05 #atm l/mol K\n", "R1= 8.314\n", "s= 4*10**-8 #cm\n", "s1= 2*10**-8 #cm\n", "m= 4 #gm\n", "m1= 28 #gm\n", "#CALCULATIONS\n", "N= P*6.02*10**23/(R*T)\n", "n= 2*s1**2*N**2*sqrt(math.pi*R1*10**7*T/m)\n", "n1= 2*s**2*N**2*sqrt(math.pi*R1*10**7*T/m1)\n", "#RESULTS\n", "print '%s %.e %s' % (' no of collisions =',n,'collisions sec^-1 mol^-1')\n", "print '%s %.2e %s' % (' \\n no of collisions =',n1,' collisions sec^-1 mol^-1')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " no of collisions = 7e+28 collisions sec^-1 mol^-1\n", " \n", " no of collisions = 1.01e+29 collisions sec^-1 mol^-1\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10 - Pg 36" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the viscosity of N2\n", "#initialisation of variables\n", "import math\n", "from math import sqrt\n", "M= 28 #gm\n", "R= 8.314*10**7 #atm l/mol K\n", "N= 6.023*10**23\n", "T= 300 #K\n", "s= 4*10**-8#cm\n", "#CALCULATIONS\n", "m= M/N\n", "k= R/N\n", "n= (5./16.)*sqrt(math.pi*m*k*T)/(math.pi*s**2)\n", "#RESULTS\n", "print '%s %.2e %s' % (' viscosity =',n,'poise')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " viscosity = 1.53e-04 poise\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12 - Pg 45" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Increase in energy per degree for 1 mole of gas\n", "#initialisation of variables\n", "n= 3\n", "R= 2 #cal mol^-1 deg^-1\n", "#CALCULATIONS\n", "I= n*R\n", "#RESULTS\n", "print '%s %.1f %s' %(' Increase in energy =',I,'cal mol^-1 deg^-1')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Increase in energy = 6.0 cal mol^-1 deg^-1\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13 - Pg 51" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Dipole moment and percentage of ionic character\n", "#initialisation of variables\n", "import math\n", "k= 1.38*10**-16\n", "N= 6*10**23 #molecules\n", "a= 105 #degrees\n", "l= 0.957 #A\n", "e= 4.8*10**-10 #ev\n", "#CALCULATIONS\n", "u= math.sqrt(9*k*2.08*10**4/(4*math.pi*N))\n", "uh= u/(2*math.cos(a*math.pi/180/2.))\n", "z= uh/(l*e*10**-8) \n", "#RESULTS\n", "print '%s %.2e %s' % (' Dipole moment of H2O=',u,'e.s.u.cm')\n", "print '%s %.2e %s' % (' \\n Dipole moment of OH bond =',uh,'e.s.u.cm')\n", "print '%s %.2f' % (' \\n fraction of ionic character =',z)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Dipole moment of H2O= 1.85e-18 e.s.u.cm\n", " \n", " Dipole moment of OH bond = 1.52e-18 e.s.u.cm\n", " \n", " fraction of ionic character = 0.33\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14 - Pg 52" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the dielectric constant\n", "#initialisation of variables\n", "import math\n", "u= 1.44*10**-18 #e.s.u\n", "k= 3.8*10**-16 \n", "T= 273. #k\n", "N= 6.023*10**23 #molecules\n", "v= 6. #cc\n", "Vm= 44.8*10**3 #cc\n", "#CALCULATIONS\n", "Pm= v+(4*math.pi*N*u**2/(3*3*k*T))\n", "r= Pm/Vm\n", "k= (2*r+1)/(1-r)\n", "#RESULTS\n", "print '%s %.5f' % (' dielectric constant =',k)\n", "print 'The answer is a bit different due to rounding off error in textbook'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " dielectric constant = 1.00153\n", "The answer is a bit different due to rounding off error in textbook\n" ] } ], "prompt_number": 13 } ], "metadata": {} } ] }