{ "metadata": { "name": "", "signature": "sha256:633d2351722f70bcb5591bec1c39746dd272ca892962c335e9bfb247bc80518a" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 15 - Electrochemistry" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1 - pg 384" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Weight of copper leaving\n", "#Initialization of variables\n", "I=0.5 #amp\n", "t=55 #min\n", "we=31.77\n", "#calculations\n", "Q=I*t*60\n", "n=Q/96496.\n", "w=n*we\n", "#results\n", "print '%s %.3f %s' %(\"Weight of copper leaving =\",w,\" g\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Weight of copper leaving = 0.543 g\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2 - pg 386" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the values of tplus and tminus\n", "#Initialization of variables\n", "w1=0.7532 #g\n", "w2=0.9972 #g\n", "wdep=0.4 #g\n", "we=31.77 #g\n", "#calculations\n", "dn=w2/we - w1/we\n", "t=dn/(wdep/we)\n", "dne=wdep/we\n", "dnmig=dn-dne\n", "tplus=-dnmig/dne\n", "tminus=1-tplus\n", "#results\n", "print '%s %.3f' %(\"tplus =\",tplus)\n", "print '%s %.3f' %(\"\\n tminus=\",tminus)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "tplus = 0.390\n", "\n", " tminus= 0.610\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3 - pg 393" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Equivalent conductance\n", "#Initialization of variables\n", "R1=312 #ohms\n", "R2=1043 #ohms\n", "c=0.01 #N\n", "kdash=0.002768 #ohm^-1cm^-1\n", "#calculations\n", "k=kdash*R1\n", "kdash2=k/R2\n", "ambda=kdash2/(c/1000.)\n", "#results\n", "print '%s %.1f %s' %(\"Equivalent conductance =\",ambda,\"ohm^-1 cm^2 equiv^-1\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Equivalent conductance = 82.8 ohm^-1 cm^2 equiv^-1\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4 - pg 393" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Conductance for acetic acid\n", "#Initialization of variables\n", "l1=349.8 \n", "l2=40.9\n", "#calculations\n", "l=l1+l2\n", "#results\n", "print '%s %.1f %s' %(\"Conductance for acetic acid =\",l,\" ohm^-1 cm^2\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Conductance for acetic acid = 390.7 ohm^-1 cm^2\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5 - pg 395" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Specific conductanc\n", "#Initialization of variables\n", "l1=63.6\n", "l2=79.8\n", "n=1 #mg/lt\n", "we=116.7 #g/equiv\n", "#calculations\n", "l=l1+l2\n", "c=n*10**-3 /we\n", "k=c*l/1000.\n", "#results\n", "print '%s %.2e %s' %(\"Specific conductance =\",k,\" ohm^-1 cm^-1\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Specific conductance = 1.23e-06 ohm^-1 cm^-1\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6 - pg 402" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the SEP of the cell\n", "#Initialization of variables\n", "e1=0.763 #volt\n", "e2=0.337 #volt\n", "#calculations\n", "e0=e1+e2\n", "#results\n", "print '%s %.3f %s' %(\"Standard electrode potential of the cell =\",e0,\"volts\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Standard electrode potential of the cell = 1.100 volts\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7 - pg 403" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Emf of the cell\n", "#Initialization of variables\n", "import math\n", "aZn=0.1\n", "aCu=0.01\n", "e1=0.763 #volt\n", "e2=0.337 #volt\n", "#calculations\n", "e0=e1+e2\n", "Q=aZn/aCu\n", "E=e0- 0.05915*math.log10(Q) /2\n", "#results\n", "print '%s %.3f %s' %(\"Emf of the cell =\",E,\" volts\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Emf of the cell = 1.070 volts\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8 - pg 410" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the Decomposition potential\n", "#Initialization of variables\n", "e1=1.2 #volts\n", "e2=0.15 #volts\n", "e3=0.45 #volts\n", "#calculations\n", "E=e1+e2+e3\n", "#results\n", "print '%s %.1f %s' %(\"Decomposition potential =\",E,\" volt\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Decomposition potential = 1.8 volt\n" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }