{ "metadata": { "name": "", "signature": "sha256:b5e7bc5aa10585d1f719544046b71d6acecd3da70a2a86327271cc53390af498" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 6 : Partial Molal Properties" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 6.1 Page: 108\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "import math \n", "\n", "# Variables\n", "T = 20. #[C]\n", "m_1 = 0. #[molal]\n", "m_2 = 1. #[molal]\n", "\n", "# Calculations\n", "# The data given in the figure 6.2 , as reported in book, can be repersented with excellent accuracy by a simple data fitting equation\n", "#V = 1.0019+0.054668*m-0.000418*m**(2)\n", "# Where 'V' is( solution volume, liters per 1000g of water ) and 'm' is the molality of ethanol in water\n", "#The partial molal volume is obtained by differentiating the expression of the 'V' with respect to 'm'\n", "# v_ethanol = dV/dm = 0.054668-2*0.000418*m\n", "# So that at zero molality \n", "m = 0 #[molal]\n", "# the partial molal volume is \n", "v_1 = 0.054668-2*0.000418*m #[L/mol]\n", "# and at\n", "m = 1. #[molal]\n", "v_2 = 0.054668-2*0.000418*m #[L/mol]\n", "v_1 = v_1*1000 #[cm**(3)/mol]\n", "v_2 = v_2*1000 #[cm**(3)/mol]\n", "\n", "# Results\n", "print \"Partial molal volume of ethanol in water at zero molality is %f cm**3/mol\"%(v_1)\n", "print \" Partial molal volume of ethanol in water at unity molality is %f cm**3/mol\"%(v_2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Partial molal volume of ethanol in water at zero molality is 54.668000 cm**3/mol\n", " Partial molal volume of ethanol in water at unity molality is 53.832000 cm**3/mol\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 6.2 Page: 109\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "import math \n", "\n", "# Variables\n", "n_eth = 1. #[mol]\n", "W_water = 1. #[kg]\n", "Temp = 20. #[C]\n", "\n", "# For pure ethanol at 20C\n", "v_ethanol = 58.4 #[cm**(3)/mol]\n", "v_ethanol = v_ethanol/1000 # [L/mol]\n", "v_water = 1.0019 #[L/1000g]\n", "\n", "# Calculations\n", "# Molality of ethanol in water is\n", "m = n_eth/W_water #[molal]\n", "# We have the equation used in the previous example as\n", "V_final_mix = 1.0019+0.054668*m-0.000418*m**(2)\n", "\n", "# Where 'V' is( solution volume, liters per 1000g of water ) and 'm' is the molality of ethanol in water\n", "# V is the final volume of the solution \n", "# The volume expansion on moxing is \n", "V_exp = V_final_mix-v_ethanol-v_water #[L]\n", "V_exp = V_exp*1000 #[cm**(3)]\n", "\n", "# Results\n", "print \"Volume change on mixing emath.tanol and water is %0.3f cubic cm\"%(V_exp)\n", "# We see that there is a net contraction on mixing of the volume of the ethanol added.\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Volume change on mixing emath.tanol and water is -4.150 cubic cm\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 6.3 Page: 109\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "import math \n", "\n", "# Variables\n", "# All the data are same as in the previous example \n", "# The equation 6.5 reported in the book is \n", "v_i_average = 0.05425 #[L/mol]\n", "# and\n", "v_i_0 = 0.0584 #[L/mol]\n", "delta_n = 1.00 #[mol]\n", "\n", "# Calculations\n", "delta_V_mixing = (v_i_average-v_i_0)*delta_n #[L]\n", "delta_V_mixing = delta_V_mixing*1000 #[cm**(3)]\n", "\n", "# Results\n", "print \"Volume change on mixing etanol and water is %f cm**3\"%(delta_V_mixing)\n", "# Which is same as the solution in example 6.2\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Volume change on mixing etanol and water is -4.150000 cm**3\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 6.4 Page: 113\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "import math \n", "\n", "# Variables\n", "m = 1. #[molal] Molality of the solution with respect to ethanol\n", "M_water = 18. #[g/mol] molecular weight of water\n", "\n", "# Calculations\n", "# First we convert molality to mole fraction\n", "x_ethanol = m/(m + 1000/M_water)\n", "\n", "# For the low range of data point on figure 6.5(page 112), we can fit an equation\n", "# (Specific volume ) = 0.018032 + 0.037002*x_ethanol - 0.039593*x_ethanol**(2) + 0.21787*x_ethanol**(3)\n", "# This is applicable for (0 < x_ethanol < 0.04 ), which is the case we have\n", "\n", "# So\n", "v_math_tan = 0.018032 + 0.037002*x_ethanol - \\\n", "0.039593*x_ethanol**(2) + 0.21787*x_ethanol**(3) #[L/mol]\n", "\n", "# Now we will find the derivative of the specific volume with respect to x_ethanol at the known point x_ethanol\n", "# (dv/dx_ethanol) = 0.037002 - 2*0.039593*x_ethanol + 3*0.21787*x_ethanol**(2)\n", "# Hence\n", "v_derv_math_tan = 0.037002 - 2*0.039593*x_ethanol + 3*0.21787*x_ethanol**(2) #[L/mol]\n", "\n", "# By simple geometry from the figure 6.6(page 113) of the book we find\n", "# a = v_math_tan + (1-x_math_tan)*(dv/dx_1)_math_tan\n", "# b = v_math_tan - x_math_tan*(dv/dx_1)_math_tan\n", "\n", "# We have a = v_ethanol and b = v_water\n", "x_math_tan = x_ethanol\n", "# So\n", "v_ethanol = v_math_tan + (1-x_math_tan)*(v_derv_math_tan) #[L/mol]\n", "v_water = v_math_tan - x_math_tan*(v_derv_math_tan) #[L/mol]\n", "\n", "# Results\n", "print \" Partial molar volume of the ethanol in the given solution is %f L/mol\"%(v_ethanol)\n", "print \" Partial molar volume of the water in the given solution is %f L/mol\"%(v_water)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Partial molar volume of the ethanol in the given solution is 0.053848 L/mol\n", " Partial molar volume of the water in the given solution is 0.018042 L/mol\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 6.7 Page: 117\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "\n", "import math \n", "\n", "# Variables\n", "x_sulph = 0.6\n", "x_water = 0.4\n", "Temp = 200. #[F]\n", "# In the given figure 6.8 in the book, drawing the math.tangent to the 200F curve at 60 wt% H2SO4, we find that it intersects the 0%(pure water) axis at 25 Btu/lbm, and the 100% H2SO4 axis at -100Btu/lbm. i.e.\n", "h_water_per_pound = 25. #[Btu/lbm]\n", "h_sulph_per_pound = -100. #[Btu/lbm]\n", "# also molecular weight of water and sulphuric acid are\n", "M_water = 18. #[lbm/lbmol]\n", "M_sulph = 98. #[lbm/lbmol]\n", "\n", "# Calculations\n", "# Using equation 6.20 given in the book we have\n", "h_water = h_water_per_pound*M_water #[Btu/lbmol]\n", "h_sulph = h_sulph_per_pound*M_sulph #[Btu/lbmol]\n", "\n", "# Results\n", "print \"Partial molar enthalpy of water in the mixture is %f Btu/lbmol\"%(h_water)\n", "print \" Partial molar enthalpy of H2SO4 in the mixture is %f Btu/lbmol\"%(h_sulph)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Partial molar enthalpy of water in the mixture is 450.000000 Btu/lbmol\n", " Partial molar enthalpy of H2SO4 in the mixture is -9800.000000 Btu/lbmol\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 6.8 Page: 119\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "import math \n", "\n", "# Variables\n", "x_sulph = 0.6\n", "x_water = 0.4\n", "M_i = 18. #[lbm/lbmol]\n", "Temp = 200. #[F]\n", "# From Equation 6.11 as given in the book, we have \n", "# dQ/dm_in = h_i-h_in\n", "# where h_i is partial molal enthalpy which is taken from the example 6.7 and h_in is the pure species molar enthalpy which is read from the figure 6.8.\n", "# So at 200F we have \n", "h_i = 25. #[Btu/lbm]\n", "h_in = 168. #[Btu/lbm]\n", "\n", "# Calculations\n", "# hence\n", "dQ_by_dm_in = h_i-h_in #[Btu/lbm]\n", "# Now \n", "dQ_by_dn_in = M_i*dQ_by_dm_in #[Btu/lbmol]\n", "\n", "# Results\n", "print \"The amount of heat removed to keep the temperature consmath.tant is %f Btu/lbm of water added\"%(dQ_by_dm_in)\n", "# The negative sign shows that this mixing is exothermic we must remove 143 Btu/lbm of water added.\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The amount of heat removed to keep the temperature consmath.tant is -143.000000 Btu/lbm of water added\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 6.9 Page: 119\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "import math \n", "\n", "# Variables\n", "m_sulph = 0.4\n", "m_water = 0.6\n", "m = m_sulph+m_water\n", "Temp = 200. #[F]\n", "# Here at 200F we can read the solution enthalpy h_solution and pure H2SO4 enthalpy h_sulph such that\n", "h_solution = -43. #[Btu/lbm]\n", "h_sulph = 168. #[Btu/lbm]\n", "# By energy balance, umath.sing h_0_water from example 6.7 in the book i.e.\n", "h_0_water = 53. #[Btu/lbm]\n", "\n", "# We find \n", "# Calculations\n", "delta_Q = m*h_solution-(m_sulph*h_sulph+m_water*h_0_water) #[Btu]\n", "\n", "# Results\n", "print \"The amount of heat added or removed is %f Btu\"%(delta_Q)\n", "# We must remove the given amount of to hold the temperature consmath.tant.\n", "# Note However the book has some mistake in calculation and reporting -172 Btu\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The amount of heat added or removed is -142.000000 Btu\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 6.10 Page: 120\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "import math \n", "\n", "# Variables\n", "x_sulph = 0.6\n", "x_water = 0.4\n", "Temp = 200. #[F]\n", "# At the 200F we have\n", "h_water = 25. #[Btu/lbm]\n", "h_sulph = -100. #[Btu/lbm]\n", "\n", "# Calculations\n", "# From equation 6.16 (as reporated in the book), rewritten for masses instead of moles we have \n", "h_solution = h_water*x_water+h_sulph*x_sulph # [Btu/lbm]\n", "\n", "# Results\n", "print \"Enthalpy of the solution is %f Btu/lbm\"%(h_solution)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Enthalpy of the solution is -50.000000 Btu/lbm\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 6.11 Page: 121\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "import math \n", "\n", "# Variables\n", "x_b = 0\n", "x_a = 1\n", "# We have\n", "#dv_a/dx_a = 3*x_b**(2)+2*x_b\n", "# We have the equation \n", "# dv_b/dx_a = -(dv_a/dx_a)/(x_b/x_a)\n", "# So\n", "# dv_b/dx_a = -(x_a/x_b)*(3*x_b**(2)+2*x_b) \n", "# Calculations\n", "dv_b_by_dx_a = x_a*(-3*x_b-2)\n", "\n", "# Results\n", "print \"Value of the dv_b/dx_a at x_b =0 is %0.0f\"%(dv_b_by_dx_a)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Value of the dv_b/dx_a at x_b =0 is -2\n" ] } ], "prompt_number": 19 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }