{ "metadata": { "name": "", "signature": "sha256:503de9d648d2755ec204b8822b124187c44f6b43ec4e442774530019aef1c520" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 3 : The Simplest Phase Equilibrium Examples and Some Simple Estimating Rules" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.1 Page: 52\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "T = 20. #[C]\n", "P = 1. #[atm]\n", "\n", "x_N2 = 0\n", "x_O2 = 0\n", "x_water = 1-x_N2-x_O2\n", "p_water = 0.023 #[atm]\n", "y_water = x_water*p_water/P\n", "\n", "print \"The mole fraction of water vapour in air in equilibrium with water is %f\"%(y_water)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The mole fraction of water vapour in air in equilibrium with water is 0.023000\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.2 Page: 53\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "T = 20. #[C]\n", "P = 1. #[atm]\n", "y_water = 0.023\n", "y = 1-y_water\n", "y_O2 = y*0.21\n", "H_O2 = 40100 #[atm]\n", "x_O2 = y_O2*P/H_O2\n", "y_N2 = y*0.79\n", "H_N2 = 80400. #[atm]\n", "\n", "x_N2 = y_N2*P/H_N2\n", "c = x_O2*998.2/18 #[(mole O2)/(L solution)]\n", "V = c*24.06 #[(L O2, STP)/(L solution)]\n", "V = V*1000 #[(ml O2, STP)/(L solution)]\n", "\n", "print \"Concentration of oxygen dissolved in water at equilibrium is %f mL O2, STP)/L solution)\"%(V)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Concentration of oxygen dissolved in water at equilibrium is 6.826690 mL O2, STP)/L solution)\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.3 Page: 52\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "from numpy import *\n", "\n", "P = 1.0 #[atm]\n", "p_w = 0.023 #[atm] Vapor pressure of pure water\n", "H_o = 40100 #[atm] Vapor pressure of pure oxygen\n", "H_n = 80400. #[atm] Vapor pressure of pure nitrogen\n", "\n", "\n", "\n", "\n", "A = matrix([[0.023, 0, 0, -1, 0, 0],[0, 40100, 0, 0, -1, 0],[0, 0 ,80400, 0, 0, -1],[0, 0, 0, 1, 1 ,1],[1 ,1, 1, 0, 0 ,0],[0, 0, 0, 0, 0.79, -0.21]]);\n", "B = matrix([[0],[0],[0],[1],[1],[0]])\n", "X = linalg.inv(A)\n", "X = X * B\n", "\n", "print \" The composition in liquid and vapor phase are summarized in the following table:\"\n", "print \" y_water \\t %f\"%(X[3])\n", "print \" y_oxygen \\t %f\"%(X[4])\n", "print \" y_nitrogen \\t %f\"%(X[5])\n", "print \" x_water \\t %f\"%(X[0])\n", "print \" x_oxygen \\t %e\"%(X[1])\n", "print \" x_nitrogen \\t %e\"%(X[2])\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The composition in liquid and vapor phase are summarized in the following table:\n", " y_water \t 0.023000\n", " y_oxygen \t 0.205170\n", " y_nitrogen \t 0.771830\n", " x_water \t 0.999985\n", " x_oxygen \t 5.116461e-06\n", " x_nitrogen \t 9.599879e-06\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.4 Page: 57\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "\n", "T = 20. #[C]\n", "x_b = 0.80\n", "x_t = 0.20\n", "A_b = 6.90565\n", "B_b = 1211.033\n", "C_b = 220.79\n", "\n", "p_b = 10**(A_b-B_b/(T+C_b))\n", "A_t = 6.95334\n", "B_t = 1343.943\n", "C_t = 219.337\n", "p_t = 10**(A_t-B_t/(T+C_t))\n", "p_1 = x_b*p_b\n", "p_2 = x_t*p_t\n", "y = 1.00 # y =(y_b+y_t) sum of the mole fractions of the benzene and toluene in the gaseous phase\n", "P = (p_1+p_2)/y\n", "y_b = x_b*p_b/P\n", "y_t = x_t*p_t/P\n", "\n", "print \" Vapour pressure of the mixture in the gaseous phase is %f torr\"%(P)\n", "print \" Mole fraction of the benzene in the vapour phase is %f\"%(y_b)\n", "print \" Mole fraction of the toluene in the vapour phase is %f\"%(y_t)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Vapour pressure of the mixture in the gaseous phase is 64.518358 torr\n", " Mole fraction of the benzene in the vapour phase is 0.932483\n", " Mole fraction of the toluene in the vapour phase is 0.067517\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.5 Page: 57" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "\n", "T = 20. #[C]\n", "x_benzene = 1.00\n", "p_i = 75.2 #[torr] vapour pressure of the benzene\n", "P = 760. #[torr] Pressure of the atmosphere\n", "\n", "y_benzene = (x_benzene*p_i)/P\n", "\n", "print \" Mole fraction of the benzene in air that is saturated with benzene is %0.1f\"%(y_benzene)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Mole fraction of the benzene in air that is saturated with benzene is 0.1\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 3.6 Page: 58\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "P = 760. #[mm Hg]\n", "x_b = 0.8 # Mole fraction of benzene in liquid phase\n", "x_t = 0.2 # Mole fraction of toluene in liquid phase\n", "\n", "A_b = 6.90565\n", "B_b = 1211.003\n", "C_b = 220.79\n", "\n", "A_t = 6.95334\n", "B_t = 1343.943\n", "C_t = 219.337\n", "T = 82. #[C]\n", "err = 1.\n", "\n", "while err > 10**(-3):\n", " p_b = 10**(6.90565 - 1211.003/(T + 220.79))\n", " p_t = 10**(6.95334 - 1343.943/(T + 219.337))\n", " y_b = x_b*p_b/P\n", " y_t = x_t*p_t/P\n", " err = abs((y_b + y_t) - 1)\n", " T = T + 0.01\n", "\n", "print \" The temperature at which the given benzene-toluene mixture will have vapor pressure of 1 atm is %0.3f deg C\"%(T)\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The temperature at which the given benzene-toluene mixture will have vapor pressure of 1 atm is 84.360 deg C\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "\n", "Example 3.7 Page: 60\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "from numpy import *\n", "import math \n", "\n", "\n", "V = 0.25 #[L] Volume of water \n", "T_1 = 0. #[C] Initial temperature of water\n", "T_2 = 20. #[C] Final temperature of water\n", "\n", "x_o = 5.12*10**(-6) # mole fraction of oxygen\n", "x_n = 9.598*10**(-6) # mole fraction of nitrogen\n", "\n", "\n", "H_o = 2.55*10**(4) #[atm]\n", "H_n = 5.29*10**(4) #[atm]\n", "\n", "p_w = 0.006 #[atm]\n", "\n", "\n", "A = matrix([[0.006, 0, 0, -1, 0, 0],[0, 25500, 0, 0, -1, 0],[0, 0 ,52900, 0, 0, -1],[0, 0, 0, 1, 1, 1],[1, 1, 1, 0, 0, 0],[0, 0, 0, 0, 0.79, -0.21]])\n", "B = matrix([[0],[0],[0],[1],[1],[0]])\n", "X = linalg.inv(A)\n", "X = X*B\n", "\n", "M_o_rej = V*( X[1] - x_o )/0.018 #[mole] oxygen\n", "V_o = M_o_rej*24200 #[ml] oxygen\n", "\n", "M_n_rej = V*( X[2] - x_n )/0.018 #[mole] nitrogen\n", "V_n = M_n_rej*24200 #[ml]\n", "\n", "print \" At equilibrium at 20 deg C the rejected amount of oxygen will be %0.2f ml\"%(V_o)\n", "print \" At equilibrium at 20 deg C the rejected amount of nitrogen will be %0.2f ml\"%(V_n)\n", "print \" And total amount of the air rejected from the water will be %0.2f ml\"%(V_o + V_n)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " At equilibrium at 20 deg C the rejected amount of oxygen will be 1.03 ml\n", " At equilibrium at 20 deg C the rejected amount of nitrogen will be 1.76 ml\n", " And total amount of the air rejected from the water will be 2.79 ml\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 3.8 Page: 61" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "\n", "P_1 = 5. #[atm]\n", "y_n = 0.79 # Mole fraction of nitrogen in atmosphere\n", "P_2 = 1.0 #[atm]\n", "M = 55. #[kg] Mass of the diver\n", "x_w = 0.75 # Fraction of water in human body\n", "T = 37 #[C] Body temperature of the diver\n", "\n", "H_n = 10.05*10**(4) # [atm]\n", "\n", "M_rej = (M*1000*x_w/18)*( P_1*y_n/H_n - P_2*y_n/H_n) #[mol]\n", "\n", "V_n = M_rej*24.2 #[L]\n", "\n", "print \" Amount of rejected nitrogen will be %0.2f Litre\"%(V_n)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Amount of rejected nitrogen will be 1.74 Litre\n" ] } ], "prompt_number": 16 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }