{ "metadata": { "name": "", "signature": "sha256:ce47d914f54a1d45d40a3d6f4d1380a1b0ebd1de3c08f3c2df6139c5199b3710" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 13 : Equilibrium In Complex Chemical Reactions" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 13.1 Page: 349\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "T =273.15+25 #[K] given temperature\n", "R = 8.314 #[J/(mol*K)] universal gas consmath.tant\n", "\n", "\n", "g_0_H = 0 #[kJ/mol]\n", "g_0_OH = -157.29 #[kJ/mol]\n", "g_0_H2O = -237.1 #[kJ/mol]\n", "\n", "delta_g_0 = g_0_H + g_0_OH - g_0_H2O #[kJ/mol]\n", "delta_g_1 = delta_g_0*1000 #[J/mol]\n", "\n", "K = math.exp((-delta_g_1)/(R*T))\n", "\n", "K_w = K\n", "\n", "print \"At the equilibrium the product of the hydrogen ion and hydroxil ion is %0.1e\"%(K_w)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "At the equilibrium the product of the hydrogen ion and hydroxil ion is 1.0e-14\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 13.2 Page: 351\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "\n", "from scipy.optimize import fsolve \n", "import math \n", "\n", "n_H2SO4 = 1. #[mol] mole of the sulphuric acid\n", "w_water = 1000. #[g] weight of the water \n", "T =273.15+25 #[K] temperature\n", "R = 8.314 #[J/(mol*K)]\n", "\n", "\n", "g_0_H = 0 #[J/mol] free energy of the hydrogen ion\n", "g_0_HSO4 = -756.01*1000 #[J/mol] free energy of the bisulphate ion\n", "g_0_H2SO4 = -744.50*1000 #[J/mol] free enery of sulphuric acid\n", "\n", "delta_g_0 = g_0_H + g_0_HSO4 - g_0_H2SO4 #[J/mol]\n", "\n", "K_1 = math.exp((-delta_g_0)/(R*T))\n", "\n", "\n", "g_0_H = 0 #[J/mol] free energy of the hydrogen ion\n", "g_0_SO4 = -744.62*1000 #[J/mol] free energy of sulphate ion\n", "g_0_HSO4 = -756.01*1000 #[J/mol] free energy of the bisulphate ion\n", "\n", "delta_g_1 = g_0_H + g_0_SO4 - g_0_HSO4 #[J/mol]\n", "\n", "K_2 = math.exp((-delta_g_1)/(R*T))\n", "\n", "\n", "\n", "def F(e):\n", " f = [0,0]\n", " f[0] = ((e[0]-e[1])*(e[0]+e[1]))/(1-e[0]) - K_1\n", " f[1] = ((e[1])*(e[0]+e[1]))/(e[0]-e[1]) - K_2\n", " return f\n", "\n", "e = [0.8,0.1]\n", "y = fsolve(F,e)\n", "e_1 = y[0]\n", "e_2 = y[1]\n", "\n", "m_H2SO4 = 1-e_1 # [molal]\n", "m_HSO4 = e_1 - e_2 #[molal]\n", "m_SO4 = e_2 #[molal]\n", "m_H = e_1 + e_2 #[molal]\n", "\n", "print \" The equilibrium concentration of H2SO4 in terms of molality is %f molal\"%(m_H2SO4)\n", "print \" The equilibrium concentration of HSO4- in terms of molality is %f molal\"%(m_HSO4)\n", "print \" The equilibrium concentration of SO4-- in terms of molality is %f molal\"%(m_SO4)\n", "print \" The equilibrium concentration of H+ in terms of molality is %f molal\"%(m_H)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The equilibrium concentration of H2SO4 in terms of molality is 0.009444 molal\n", " The equilibrium concentration of HSO4- in terms of molality is 0.980653 molal\n", " The equilibrium concentration of SO4-- in terms of molality is 0.009903 molal\n", " The equilibrium concentration of H+ in terms of molality is 1.000459 molal\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 13.3 Page: 352\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "from scipy.optimize import fsolve \n", "import math \n", "\n", "P = 10. #[MPa] given pressure\n", "T = 250. #[C] Temperature\n", "n_T_0 = 1. #[mol]\n", "n_CO = 0.15 #[mol]\n", "n_CO2 = 0.08 #[mol]\n", "n_H2 = 0.74 #[mol]\n", "n_CH4 = 0.03 #[mol]\n", "\n", "\n", "\n", "V_1 = -2\n", "V_2 = 0\n", "K_1 = 49.9 # For the first reaction \n", "K_2 = 0.032 # For the second reaction\n", "\n", "v_CO_1 = -1\n", "v_H2_1 = -2\n", "v_CH3OH_1 = +1\n", "v_CO2_2 = -1\n", "v_H2_2 = -1\n", "v_CO_2 = +1\n", "v_H2O_2 = +1\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "def F(e):\n", " f = [0,0]\n", " f[0] = ((0 + e[0])/(1 - 2*e[0]))/(((0.15 - e[0] + e[1])/(1 - 2*e[0]))*((0.74 - 2*e[0] - e[1])/(1 - 2*e[0]))**(2)) - K_1\n", " f[1] = (((0.15 - e[0] + e[1])/(1 - 2*e[0]))*((0 + e[1])/(1 - 2*e[0])))/(((0.08 - e[1])/(1 - 2*e[0]))*((0.74 - 2*e[0] - e[1])/(1 - 2*e[0]))) - K_2\n", " return f\n", "\n", "\n", "e = [0.109, 0]\n", "y = fsolve(F,e)\n", "e_1 = y[0]\n", "e_2 = y[1]\n", "\n", "c_CO2 = e_2/(n_CO2)*100\n", "c_CO = e_1/(n_CO + 0.032)*100\n", "\n", "print \" Percent conversion of CO is %f%%\"%(c_CO)\n", "print \" Percent conversion of CO2 is %f%%\"%(c_CO2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Percent conversion of CO is 96.815234%\n", " Percent conversion of CO2 is 47.930771%\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 13.4 Page: 354\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "T = 273.15+25 #[K] Temperature\n", "R = 8.314 #[J/(mol*K)] universal gas consmath.tant\n", "\n", "g_0_Ag = 77.12*1000 #[J/mol]\n", "g_0_Cl = -131.26*1000 #[J/mol]\n", "g_0_AgCl = -109.8*1000 #[J/mol]\n", "\n", "delta_g_0 = g_0_Ag + g_0_Cl - g_0_AgCl #[J/mol]\n", "\n", "K = math.exp((-delta_g_0)/(R*T))\n", "\n", "\n", "a_AgCl = 1.00\n", "\n", "print \"The amount of solid dissolved in terms of solubility product is %0.2e\"%(K)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The amount of solid dissolved in terms of solubility product is 1.77e-10\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 13.5 Page: 357\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math \n", "\n", "T = 273.15+25 #[K] Given temperature of air\n", "P = 1. #[atm] Pressure of the air\n", "y_CO2 = 350.*10**(-6) # Amount of CO2 present in air at the given condition \n", "R = 8.314 #[J/(mol*K)]\n", "\n", "g_0_H2CO3 = -623.1*1000 #[J/mol]\n", "g_0_H = 0. #[J/mol]\n", "g_0_HCO3 = -586.85*1000 #[J/mol]\n", "\n", "delta_g_0 = g_0_H + g_0_HCO3 - g_0_H2CO3 #[J/mol]\n", "K_1 = math.exp((-delta_g_0)/(R*T)) \n", "\n", "g_0_CO3 = -527.89*1000 #[J/mol]\n", "\n", "delta_g_1 = g_0_H + g_0_CO3 - g_0_HCO3 #[J/mol]\n", "K_2 = math.exp((-delta_g_1)/(R*T))\n", "\n", "\n", "H = 1480. #[atm]\n", "\n", "x_CO2 = P*y_CO2/H\n", "\n", "n_water = 1000/18. #[mol]\n", "m_CO2 = x_CO2*n_water #[molal]\n", "\n", "m_HCO3 = math.sqrt(K_1*m_CO2) #[molal]\n", "m_H = m_HCO3 #[molal]\n", "\n", "m_CO3 = K_2*(m_HCO3/m_H) #[molal]\n", "\n", "print \" Amount of the CO2 dissolved in water in equilibrium with air is \\t\\t\\t%0.2e molal\"%(m_CO2)\n", "print \" Conentration of HCO3 ion and hydrogen ion H- in solution in equilibrium with air is %0.2e molal\"%(m_HCO3)\n", "print \" And concentration of CO3 ion in the solution in equilibrium with air is\\t\\t%0.2e molal\"%(m_CO3)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Amount of the CO2 dissolved in water in equilibrium with air is \t\t\t1.31e-05 molal\n", " Conentration of HCO3 ion and hydrogen ion H- in solution in equilibrium with air is 2.42e-06 molal\n", " And concentration of CO3 ion in the solution in equilibrium with air is\t\t4.68e-11 molal\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 13.6 Page: 358\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math \n", "\n", "m_H = 10**(-10) #[molal] molality of hydrogen ion\n", "K_1 = 4.5*10**(-7)\n", "K_2 = 4.7*10**(-11)\n", "\n", "m_CO2 = 1.32*10**(-5) #[molal] from previous example\n", "m_HCO3 = K_1*(m_CO2/m_H) #[molal]\n", "\n", "m_CO3 = K_2*(m_HCO3/m_H) #[molal]\n", "\n", "print \" Amount of the CO2 dissolved in water in equilibrium with air is \\t%0.2e molal\"%(m_CO2)\n", "print \" Conentration of HCO3 ion in solution in equilibrium with air is \\t %0.2e molal\"%(m_HCO3)\n", "print \" And concentration of CO3 ion in the solution in equilibrium with air is %0.2e molal\"%(m_CO3)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Amount of the CO2 dissolved in water in equilibrium with air is \t1.32e-05 molal\n", " Conentration of HCO3 ion in solution in equilibrium with air is \t 5.94e-02 molal\n", " And concentration of CO3 ion in the solution in equilibrium with air is 2.79e-02 molal\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 13.7 Page: 362\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "T = 298.15 #[K] Temperature\n", "F = 96500. #[(coulomb)/(mole*electrons)] faraday consmath.tant\n", "\n", "\n", "n_e = 6. #[electron]\n", "g_0_CO2 = -394.4*1000 #[J/mol] \n", "g_0_Al = 0 #[J/mol]\n", "g_0_C = 0 #[J/mol]\n", "g_0_Al2O3 = -1582.3*1000 #[J/mol]\n", "\n", "delta_g_0 = 1.5*g_0_CO2 + 2*g_0_Al - 1.5*g_0_C - g_0_Al2O3 #[J/mol]\n", "\n", "E_0 = (-delta_g_0)/(n_e*F) #[V]\n", "\n", "print \"Standard state cell voltage for the production of aluminium is %f Volt\"%(E_0)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Standard state cell voltage for the production of aluminium is -1.711054 Volt\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 13.8 Page: 362\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "T = 298.15 #[K] Temperature\n", "F = 96500. #[(coulomb)/(mole*electrons)] faraday consmath.tant\n", "\n", "delta_g_0 = -587.7*1000 #[J/mol]\n", "n_e = 1 #[electron] no of electron transferred\n", "E_298_0 = (-delta_g_0)/(n_e*F) #[V]\n", "\n", "print \"The reversible voltage for given electrochemical device is %f Volt\"%(E_298_0)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The reversible voltage for given electrochemical device is 6.090155 Volt\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 13.9 Page: 363\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "T = 298.15 #[K] Temperature\n", "P_0 = 1. #[atm]\n", "P = 100. #[atm]\n", "E_0 = -1.229 #[V]\n", "F = 96500. #[(coulomb)/(mole*electrons)] faraday consmath.tant\n", "R = 8.314 #[J/(mol*K)] universal gas consmath.tant \n", "\n", "n_e = 2. #[(mole electrons)/mole]\n", "\n", "\n", "\n", "E = E_0 - 1.5*(R*T)*math.log(P/P_0)/(n_e*F)\n", "\n", "print \"The equilibrium cell voltage of electrolytic cell if feed and product are at the pressure 100 atm is %f Volt\"%(E)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The equilibrium cell voltage of electrolytic cell if feed and product are at the pressure 100 atm is -1.317721 Volt\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 13.10 Page: 365 \n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "T = 273.15+25 #[K] Temperature\n", "P = 11.38/760 #[atm] Pressure\n", "R = 0.08206 #[(L*atm)/(mol*K)] Gas consmath.tant\n", "v = 0.6525/0.04346 #[L/g] Specific volume \n", "M = 60.05 #[g/mol] Molecular weight of HAc in the monomer form\n", "\n", "V = v*M #[L/mol]\n", "\n", "z = (P*V)/(R*T)\n", "\n", "print \"The value of the compressibility factor for HAc at given condition is %f\"%(z) \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of the compressibility factor for HAc at given condition is 0.551780\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 13.11 Page: 366\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "from scipy.optimize import fsolve \n", "import math \n", "\n", "T = 273.15+25 #[K] Temperature\n", "P = 11.38 #[torr] Pressure\n", "\n", "\n", "K = 10**(-10.4184 + 3164/T) #[1/torr]\n", "\n", "\n", "def f(y_HAc_2): \n", "\t return K*(P*(1-y_HAc_2))**(2)/P-y_HAc_2\n", "y_HAc_2 = fsolve(f,0)\n", "y_HAc = 1-y_HAc_2\n", "\n", "print \"Mole fraction of the monomer in the vapour phase is %f\"%(y_HAc)\n", "print \"Mole fraction of the dimer in the vapour phase is %f\"%(y_HAc_2)\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mole fraction of the monomer in the vapour phase is 0.210713\n", "Mole fraction of the dimer in the vapour phase is 0.789287\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ " Example 13.12 Page: 367\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "T = 273.15+25 #[K] Temperature\n", "P = 11.38/760 #[atm] Pressure\n", "R = 0.08206 #[(L*atm)/(mol*K)] Gas consmath.tant\n", "v = 0.6525/0.04346 #[L/g] Specific volume \n", "\n", "y_HAc = 0.211 # monomer \n", "y_HAc_2 = 0.789 # dimer\n", "\n", "M_HAc = 60.05 #[g/mol] monomer \n", "M_HAc_2 = 120.10 #[g/mol] dimer\n", "\n", "M_avg = M_HAc*y_HAc + M_HAc_2*y_HAc_2 #[g/mol]\n", "\n", "V = v*M_avg #[L/mol]\n", "\n", "z = (P*V)/(R*T)\n", "\n", "print \"The compressibility factor z for the gaseous mixture is %f\"%(z)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The compressibility factor z for the gaseous mixture is 0.987135\n" ] } ], "prompt_number": 25 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }