{ "metadata": { "name": "", "signature": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 2, Damped harmonic oscillator" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3, page 102" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from math import log\n", "# relaxation time ,damping force ,time and total distance\n", "v=10 #cm/s\n", "vo=100 #cm/s\n", "t=23 #sec\n", "x=-(log(v/vo))/t #\n", "t=(1/x)*1 #seconds\n", "print \"Relaxation time = %0.f seconds \" %t\n", "m=40 #gm\n", "vx=50 #cm/sec\n", "fd=((-x*m*10**-3*vx*10**-2)) #newton\n", "print \"Damping force = %0.e N\" %fd\n", "tx=5*(log(10)) #\n", "print \"Time in which kinetic energy will reduce to 1/10th of its value = %0.1f seconds \" %tx\n", "xx=v*1 #\n", "print \"Distance travelled = %0.f m \" %xx" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Relaxation time = 10 seconds \n", "Damping force = -2e-03 N\n", "Time in which kinetic energy will reduce to 1/10th of its value = 11.5 seconds \n", "Distance travelled = 10 m \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4, page 104" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt, pi\n", "# period\n", "#given data :\n", "m=2 # in g\n", "k=30 # in dynes/cm\n", "b=5 # in dynes/cm-sec**-1\n", "r=b/(2*m) \n", "w0=sqrt(k/m) \n", "T=2*pi/sqrt(w0**2-r**2) \n", "print \"The time period, T = %0.2f s \" %T" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The time period, T = 1.71 s \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5, page 105" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# time\n", "tr=50 #seconds\n", "r=(1/(2*tr)) #s**-1\n", "t=1/r #seconds\n", "print \"Time in which amplitude falls to 1/e times the initial value = %0.f seconds \" %t\n", "t2=tr #\n", "print \"Time in which system falls to 1/e times the initial value = %0.f seconds\" %t2\n", "t3=2*(1/r) #f \n", "print \"Time in which energy falls to 1/e^4 of the initial value = %0.f seconds \" %t3" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Time in which amplitude falls to 1/e times the initial value = 100 seconds \n", "Time in which system falls to 1/e times the initial value = 50 seconds\n", "Time in which energy falls to 1/e^4 of the initial value = 200 seconds \n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6, page 106" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt, pi\n", "import sympy\n", "# relaxation time ,frequency ,energy ,time ,rate and number of vibrations\n", "k=20 #N/m\n", "m=5#N-s/m\n", "wo=sqrt(k/m) #\n", "v1=2 #m/s\n", "to=m/v1 #seconds\n", "print \"(a) Relaxation time = %0.1f seconds \" %to\n", "w=wo*(1-(1/(2*wo*to))**2) #\n", "lf=w/(2*pi) #vibration/s\n", "print \"(b) Linear frequency = %0.3f vibration/s \" %lf\n", "a=1 #\n", "e=((1/2)*m*a**2*wo**2) #joule\n", "print \"(c) Energy = %0.f J \"%e\n", "tm=v1*to #seconds\n", "print \"(d) Time taken in fall of amlitude to 1/e value = %0.f seconds \" %tm\n", "print \"(e) Time taken in fall of velocity amplitude to 1/2 value = %0.f seconds \" %tm\n", "tr=to #\n", "print \"(f) Time taken in fall of energy to 1/e value = %0.2f seconds\" %tr\n", "eng=(1/2)*m*a*v1**2*(2/tm) #\n", "print \"(g) Rate of loss of energy at t=0 seconds is\",eng,\"J/s and at any time is\",eng,\"e^-2*t/\",tm,\"J/s\"\n", "rel=((eng*2*pi)/wo) #J/s\n", "print \"(h) Rate of loss of energy per cycle at t=0 seconds is\",rel,\"J/s and at any time is\",round(rel,2),\"e^-2*t/\",tm,\"J/s\"\n", "nv=tm/((2*sympy.pi)/wo) #\n", "print \"(i) Number of vibratios made are =\",nv" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Relaxation time = 2.5 seconds \n", "(b) Linear frequency = 0.315 vibration/s \n", "(c) Energy = 10 J \n", "(d) Time taken in fall of amlitude to 1/e value = 5 seconds \n", "(e) Time taken in fall of velocity amplitude to 1/2 value = 5 seconds \n", "(f) Time taken in fall of energy to 1/e value = 2.50 seconds\n", "(g) Rate of loss of energy at t=0 seconds is 4.0 J/s and at any time is 4.0 e^-2*t/ 5.0 J/s\n", "(h) Rate of loss of energy per cycle at t=0 seconds is 12.5663706144 J/s and at any time is 12.57 e^-2*t/ 5.0 J/s\n", "(i) Number of vibratios made are = 5.0/pi\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7, page 109" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# time and distance\n", "b=5 #N-s/m\n", "v=10 #m/s\n", "to=b/v #second\n", "print \"(a) Time in which velocity falls to 1/e times the initial value = %0.2f second \" %to\n", "t2=b*to #\n", "print \"(b) Time in which velocity falls to half the initial value = %0.2f second \" %t2\n", "print \"(c) Distance traversed by the particle before the velocity falls to half the initial value is\",b,\"*(1-exp(log)\",(2*to)/to\n", "x=b #m\n", "print \"(d) Distance traversed by the particle it comes to rest = %0.2f m \" %x" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Time in which velocity falls to 1/e times the initial value = 0.50 second \n", "(b) Time in which velocity falls to half the initial value = 2.50 second \n", "(c) Distance traversed by the particle before the velocity falls to half the initial value is 5 *(1-exp(log) 2.0\n", "(d) Distance traversed by the particle it comes to rest = 5.00 m \n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8, page 111" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import log, pi\n", "# time interval\n", "q=5*10**4 #quality factor\n", "x=1/10 #\n", "fr=300 #second**-1\n", "to=q/(2*pi*fr) #second\n", "xm=((to*log(10))) #seconds\n", "print \"Time interval = %0.f seconds \" %xm" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Time interval = 61 seconds \n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9, page 111" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Time\n", "#given data :\n", "n=240 # in sec**-1\n", "w=2*pi*n \n", "Q=2*10**3 \n", "tau=Q/w \n", "t=4*tau \n", "print \"Time, t = %0.1f s \" %t" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Time, t = 5.3 s \n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10, page 112" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import log\n", "# Logarithmic decrement\n", "#given data :\n", "a=100 \n", "l1=20 # in cm\n", "l2=2 # in cm\n", "l=l1/l2 \n", "lamda=(1/100)*log(l) \n", "print \" Logarithmic decrement = %0.3f \" %lamda" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Logarithmic decrement = 0.023 \n" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12, page 116" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt, pi\n", "# Frequency\n", "#given data :\n", "C=10**-6 # in F\n", "L=0.2 # in H\n", "R=800 # in ohm\n", "Rm=2*sqrt(L/C) \n", "n=sqrt((1/(L*C))-(R**2/(4*L**2)))/(2*pi) \n", "print \"The frequency, n = %0.1f cycles/s \" %n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The frequency, n = 159.2 cycles/s \n" ] } ], "prompt_number": 33 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13, page 116" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "# Resistance\n", "#given data :\n", "C=0.0012*10**-6 # in F\n", "L=0.2 # in H\n", "Rm=2*sqrt(L/C) \n", "print \"The maximum value of resistance, Rm = %0.2e ohms \" %Rm" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum value of resistance, Rm = 2.58e+04 ohms \n" ] } ], "prompt_number": 35 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14, page 117" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt, pi\n", "# Q factor\n", "#given data :\n", "C=5*10**-6 # in F\n", "L=2*10**-3 # in H\n", "R=0.2 # in ohm\n", "w=round(sqrt((1/(L*C))-(R**2/(4*L**2)))) \n", "f=w/(2*pi) \n", "Q=w*L/R \n", "print \"Frequency = %0.2e Hz \" %f\n", "print \"Quality factor, Q = %0.f \" %Q" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency = 1.59e+03 Hz \n", "Quality factor, Q = 100 \n" ] } ], "prompt_number": 38 } ], "metadata": {} } ] }