{ "metadata": { "name": "", "signature": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 17, Electromagnetic waves" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1, page 550" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from numpy import pi\n", "# magnitude\n", "#given data :\n", "R=7*10**8 # in m\n", "P=3.8*10**26 # in Watt\n", "S=P/(4*pi*R**2) \n", "print \"Magnitude of poynting vector, S = %0.3e W/m^2 \" %S" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Magnitude of poynting vector, S = 6.171e+07 W/m^2 \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2, page 551" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from numpy import pi\n", "# Poynting vector\n", "#given data :\n", "R=1.5*10**11 # in m\n", "P=3.8*10**26 # in Watt\n", "S=P/(4*pi*R**2) # in W/m**2\n", "Se=round(S*60/(4.2*10**4)) \n", "print \"Poynting vector, Se = %0.2f cal/cm^2-m \" %Se" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Poynting vector, Se = 2.00 cal/cm^2-m \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3, page 560" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from numpy import sqrt\n", "# Amplitude and magnetic field\n", "#given data :\n", "S=2 # in cal/cm**2- min\n", "EH=S*4.2*10**4/60 # joule/m**2 sec\n", "mu0=4*pi*10**-7 \n", "epsilon0=8.85*10**-12 \n", "EbyH=sqrt(mu0/epsilon0) \n", "E=sqrt(EH*EbyH) \n", "H=EH/E \n", "E0=E*sqrt(2) \n", "H0=H*sqrt(2) \n", "print \"E = %0.2f V/m \"%E\n", "print \"H = %0.3f Amp-turn/m \"%H\n", "print \"Amplitude of electric fields of radiation, E0 = %0.f V/m \" %E0\n", "print \"Magnetice field of radition, H0 = %0.2f Amp-turn/m \" %H0" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "E = 726.32 V/m \n", "H = 1.928 Amp-turn/m \n", "Amplitude of electric fields of radiation, E0 = 1027 V/m \n", "Magnetice field of radition, H0 = 2.73 Amp-turn/m \n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4, page 560" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from numpy import pi\n", "# electric and magnetic field\n", "#given data :\n", "r=2 # in m\n", "mu0=4*pi*10**-7 \n", "epsilon0=8.85*10**-12 \n", "EbyH=sqrt(mu0/epsilon0) \n", "EH=1000/(4*r**2*pi**2) # in W/m**2\n", "E=sqrt(EH*EbyH) \n", "H=(EH/E) \n", "print \"Intensities of electric, E = %0.2f V/m\" %E\n", "print \"Magnetic field of radiation, H = %0.4f Amp-turn/m \" %H" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Intensities of electric, E = 48.85 V/m\n", "Magnetic field of radiation, H = 0.1296 Amp-turn/m \n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5, page 593" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import degrees, pi, asin, sin, tan\n", "# Degree of polarization\n", "#given data :\n", "thetai=45 # in degree\n", "n=1.5 #/ index\n", "thetar=asin(sin(thetai*pi/180)/n) # radian\n", "thetar= degrees(thetar)\n", "Rl=sin((thetai-thetar)*pi/180)**2/sin((thetai+thetar)*pi/180)**2 \n", "Rp=tan(thetai-thetar*pi/180)**2/tan((thetai+thetar)*pi/180)**2 \n", "D=((Rl-Rp)/(Rl+Rp))*100 \n", "print \"Degree of polarization, D = %0.2f %%\" %D\n", "# answer is wrong in the textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Degree of polarization, D = 49.44 %\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6, page 594" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Frequency\n", "#given data :\n", "Del=1 # in m\n", "mu=4*pi*10**-7 # in H/m\n", "sigma=4 # in siemen/m\n", "v=1*10**-3/(pi*Del**2*mu*sigma) \n", "print \"Frequency, v = %0.1f kHz \" %v" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency, v = 63.3 kHz \n" ] } ], "prompt_number": 16 } ], "metadata": {} } ] }