{ "metadata": { "name": "", "signature": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 12, Doppler's Effect" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1, page 457" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "# Speed\n", "#given data :\n", "vl=166 #m/s\n", "v=(2*vl) #m/s\n", "print \"Speed = %0.f m/s \" %v" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Speed = 332 m/s \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2, page 458" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# frequency\n", "#given data :\n", "f1=90 #vibrations/second\n", "f2=(1+(1/10))*f1 #vibrations/s\n", "print \"Frequency = %0.f vibrations/s \"%f2" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency = 99 vibrations/s \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3, page 458" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# frequency\n", "#given data :\n", "N=400 #hZ\n", "V=340 #M/S\n", "VS=60 #M/S\n", "N2=((V/(V-VS))*N) #Hz\n", "print \"Frequency when engine is approaching to the listner = %0.f Hz \" %round(N2)\n", "N3=((V/(V+VS))*N) #Hz\n", "print \"Frequency when engine is moving away from the listner = %0.f Hz \" %N3" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency when engine is approaching to the listner = 486 Hz \n", "Frequency when engine is moving away from the listner = 340 Hz \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4, page 459" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#WAVELENGTH\n", "x=1/5 #\n", "h=60 #cm\n", "h1=((1-x)*h) #cm\n", "h2=((1+x)*h) #cm\n", "print \"Wavelength of waves in north-direction = %0.f cm \" %h1\n", "print \"Wavelength of waves in south-direction = %0.f cm\" %h2" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength of waves in north-direction = 48 cm \n", "Wavelength of waves in south-direction = 72 cm\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5, page 460" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#frequency\n", "v=340 #m/s\n", "n=600 #Hz\n", "vs=36 #km h**-1\n", "vs1=vs*(1000/3600) #m/s\n", "apf=((v)/(v-vs1))*n #Hz\n", "vs2=54 #km h**-1\n", "vs3=vs2*(1000/3600) #m/s\n", "apf1=((v)/(v+vs3))*n #Hz\n", "print \"Two apparent frequencies are\",round(apf,1),\"Hz and\",round(apf1,2),\"Hz.\"\n", "df=apf-apf1 #Hz\n", "print \"Difference in frequencies = %0.2f Hz\" %df\n", "#second apparent frequency and difference is calculated wrong in the textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Two apparent frequencies are 618.2 Hz and 574.65 Hz.\n", "Difference in frequencies = 43.53 Hz\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6, page 460" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#frequency\n", "v=330 #m/s\n", "n=500 #Hz\n", "vs=30 #km h**-1\n", "vs1=vs*(1000/3600) #m/s\n", "n3=((v+vs1)/(v-vs1))*n #Hz\n", "print \"Frequency when cars are approaching = %0.f Hz \" %round(n3)\n", "n1=((v-vs1)/(v+vs1))*n #Hz\n", "print \"Frequency when cars have crossed = %0.f Hz\" %round(n1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency when cars are approaching = 526 Hz \n", "Frequency when cars have crossed = 475 Hz\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7, page 461" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#frequency\n", "v=330 #m/s\n", "n=600 #Hz\n", "vs=20 #m/s\n", "apf=((v)/(v+vs))*n #Hz\n", "print \"Frequency when source is moving away from the observer = %0.f Hz \" %round(apf)\n", "apf1=((v)/(v-vs))*n #Hz\n", "print \"Frequency when siren reaching at the cliff = %0.f Hz \" %round(apf1)\n", "bf=apf1-apf #Hz\n", "print \"Beat frequency = %0.f Hz \" %round(bf)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency when source is moving away from the observer = 566 Hz \n", "Frequency when siren reaching at the cliff = 639 Hz \n", "Beat frequency = 73 Hz \n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8, page 461" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi\n", "#frequency\n", "r=3 #m\n", "w=10 #s**-1\n", "vs=r*w #m/s\n", "A=6 #m\n", "fd=5/pi #s**-1\n", "vmax=A*2*pi*fd #m/s\n", "v=330 #m/s\n", "n=340 #Hz\n", "nmax=((v+vmax)/(v-vs))*n #Hz\n", "nmin=((v-vmax)/(v+vs))*n #Hz\n", "print \"Maximum frequency = %0.f Hz \" %nmax\n", "print \"Minimum frequency = %0.f Hz \" %nmin" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum frequency = 442 Hz \n", "Minimum frequency = 255 Hz \n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9, page 462" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#speed\n", "n12=3 #\n", "n=340 #Hz\n", "v=340 #m/s\n", "vs=((n12*v)/(2*n)) #m/s\n", "print \"Speed = %0.2f m/s \" %vs" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Speed = 1.50 m/s \n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10, page 463" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "#frequency\n", "sa=1.5 #km\n", "oa=1 #km\n", "so=sqrt(oa**2+sa**2) #km\n", "csd=sa/so #\n", "v=0.33 #km/s\n", "n=400 #Hz\n", "vlov=120*(1000/3600) #m/s\n", "vs1=(1/30)*csd #km/s\n", "nd=((v)/(v-vs1))*n #vibrations/sec\n", "print \"Apparent frequency = %0.f vibrations/second \" %round(nd)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Apparent frequency = 437 vibrations/second \n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11, page 464" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#frequency\n", "v=1200 #km/h\n", "w=40 #km/h\n", "vs=40 #km/h\n", "n=580 #Hz\n", "nd=((v+vs)/((v+vs)-vs))*n #Hz\n", "print \"Frequency of the whistle as heared by an observer on the hill = %0.2f Hz \" %nd\n", "x=29/30 #km\n", "print \"Distance = %0.2f m \" %(x*1000)\n", "ndd=((v-w)+vs)/((v-w))*nd #Hz\n", "print \"Frequency heared by driver = %0.2f Hz \" %ndd\n", "#distance is calculated wrong in the textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency of the whistle as heared by an observer on the hill = 599.33 Hz \n", "Distance = 966.67 m \n", "Frequency heared by driver = 620.00 Hz \n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12, page 469" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#doppler shift and velocity\n", "h1=6010 #\u00c5\n", "h2=6000 #\u00c5\n", "ds=h1-h2 #\u00c5\n", "print \"Doppler shift = %0.f \u00c5 \" %ds\n", "c=3*10**8 #m/s\n", "v=((ds/h2)*c) #m/s\n", "print \"Speed = %0.e m/s \" %v" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Doppler shift = 10 \u00c5 \n", "Speed = 5e+05 m/s \n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13, page 469" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#doppler shift and velocity\n", "h1=3737 #\u00c5\n", "h2=3700 #\u00c5\n", "ds=h1-h2 #\u00c5\n", "print \"Doppler shift = %0.f \u00c5 \" %ds\n", "c=3*10**8 #m/s\n", "v=((ds/h2)*c) #m/s\n", "print \"Speed = %0.e m/s \" %v\n", "#speed is calculated wrong in the textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Doppler shift = 37 \u00c5 \n", "Speed = 3e+06 m/s \n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14, page 469" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#speed\n", "dv=10**3 #Hz\n", "v=5*10**9 #Hz\n", "c=3*10**8 #m/s\n", "v=((dv)/(2*v))*c #m/s\n", "print \"Velocity = %0.f m/s \" %v" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity = 30 m/s \n" ] } ], "prompt_number": 19 } ], "metadata": {} } ] }