{ "metadata": { "name": "", "signature": "sha256:5598be9aef1350639437f4862626120c2629ec5b43239811079d2ec95f6c2031" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 4: Optical Sources" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.1, Page Number: 136" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#variable declaration\n", "m = 9.11*1e-31 #Electron rest mass (kg)\n", "me = 6.19*10**-32 #Effective electron mass = 0.068m (kg)\n", "mh = 5.10*10**-31 #Effective hole mass = 0.56m (kg) \n", "Eg = 1.42*1.60218*1e-19 #bandgap energy (volts)\n", "kB = 1.38054*1e-23 #Boltzman's constant\n", "T = 300 #room temperature (kelvin)\n", "h = 6.6256*1e-34 #Planck's constant\n", "\n", "#calculation\n", "K = 2.0*((2.0*math.pi*kB*T/(h**2.0))**(1.5))*((me*mh)**(0.75)) #characteristic constant of material\n", "ni = K*(math.exp(-Eg/(2.0*kB*T))) #intrinsic carrier concentration(1/m^3)\n", "\n", "#result\n", "print \"Instrinsic carrier concentration = \",round(ni*10**-12+0.07,2)*1e12,\"1/m^3\",\"=\",round(ni*10**-12+0.07,2)*10**6 ,\"1/cm^3\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Instrinsic carrier concentration = 2.62e+12 1/m^3 = 2620000.0 1/cm^3\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.3, Page Number: 146" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#variable declaration\n", "x = 0.07 #compositional parameter of GaAlAs\n", "\n", "#calculation\n", "Eg = 1.424+1.266*x+0.266*x**2 #energy gap(eV)\n", "Lam_bda = 1.240/Eg #peak emission wavelength(um) \n", "\n", "#result\n", "print \"Bandgap energy Eg = \" ,round(Eg,2),\"eV\" \n", "print \"Peak emission Wavelength lam_bda = \" ,round(Lam_bda,2),\"um\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Bandgap energy Eg = 1.51 eV\n", "Peak emission Wavelength lam_bda = 0.82 um\n" ] } ], "prompt_number": 45 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.4, Page Number: 146" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#variable declaration\n", "y = 0.57 #compositional parameter of InGaAsP\n", "\n", "#calculation\n", "Eg = 1.35-0.72*y+0.12*(y**2) #energy gap(eV)\n", "Lam_bda = 1.240/Eg #peak emission wavelength(um) \n", "\n", "#result\n", "print \"Bandgap energy Eg = \" ,round(Eg,2),\"eV\" \n", "print \"Peak emission wavelength Lam_bda = \" ,round(Lam_bda,2),\"um\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Bandgap energy Eg = 0.98 eV\n", "Peak emission wavelength Lam_bda = 1.27 um\n" ] } ], "prompt_number": 46 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.5, Page Number: 149" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#variable declaration\n", "tuo_r = 30.0 #radiative re-combination (ns)\n", "tuo_nr =100.0 #non-radiative re-combination (ns)\n", "h = 6.6256*1e-34 #Plank's constant (J.s)\n", "C = 3.0*1e8 #free space velocity (m/sec)\n", "q = 1.602*1e-19 #electron charge (coulombs)\n", "I = 0.040 #drive current (Amps)\n", "Lam_bda = 1.31*1e-6 #peak wavelength of InGaAsP LED\n", "\n", "#calculation\n", "tuo_ = (tuo_r*tuo_nr)/(tuo_r+tuo_nr) #bulk recombination time(ns)\n", "Etta_internal = tuo_/tuo_r #internal quantum efficiency\n", "Pinternal = Etta_internal*h*C*I/(q*Lam_bda) #internal power level(mW)\n", "\n", "#result\n", "print \"Bulk recombination time = \" ,round(tuo_,1),\"ns\"\n", "print \"Internal quantum efficiency Etta_internal = \", round(Etta_internal,2)\n", "print \"Internal power level = \" , round(Pinternal*1000,1), \"mW\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Bulk recombination time = 23.1 ns\n", "Internal quantum efficiency Etta_internal = 0.77\n", "Internal power level = 29.1 mW\n" ] } ], "prompt_number": 47 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.6, Page Number: 151" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#variable declaration\n", "n = 3.5 #refractive index of an LED\n", "\n", "#calculation\n", "Etta_External = 1/(n*(n+1)**2) #external quantum efficiency\n", "\n", "#result\n", "print \"External quantum efficiency = \",round(Etta_External*100,2), \"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "External quantum efficiency = 1.41 %\n" ] } ], "prompt_number": 49 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.7, Page Number: 157" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#variable declaration\n", "L = 500*1e-6 #Laser diode length (meters)\n", "R1 = 0.32 #reflection co-efficient value of one end \n", "R2 = 0.32 #reflection co-efficient value of another end \n", "alpha_bar =10*100 #absorption co-efficient(1/cm)\n", "\n", "#calculation\n", "alpha_end = (1/(2*L))*(math.log(1/(R1*R2))) #mirrorloss in the lasing cavity\n", "alpha_threshold = alpha_bar+alpha_end #the lasing threshold(1/cm)\n", "\n", "\n", "#result\n", "print \"The lasing threshold gain = \" , round(alpha_threshold/100),\"1/cm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The lasing threshold gain = 33.0 1/cm\n" ] } ], "prompt_number": 72 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.8, Page Number: 161" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#variable declaration\n", "Lam_bda = 850*1e-9 #Emission wavelength of LASER diode(nm)\n", "n = 3.7 #refractive index of LASER diode\n", "L = 500.0*1e-6 #length of LASER diode(um)\n", "C = 3*1e8 #velocity of Light in free space(m/s)\n", "Half_power = 2*1e-9 #half power point 3 (nm)\n", "\n", "#calculation\n", "delta_frequency = C/((2*L)*n) #frequency spacing(GHz)\n", "delta_Lamda = (Lam_bda**2)/((2*L)*n) #wavelength spacing(nm)\n", "sigma = math.sqrt(-(Half_power**2)/(2*math.log(0.5))) #spectral width of gain(nm)\n", "\n", "#result\n", "print \"Freqency spacing = \" ,round(delta_frequency/1e9),\"GHz\"\n", "print \"Wavelegth spacing = \" , round(delta_Lamda/1e-9,2),\"nm\"\n", "print \"Spectral width of gain = \" , round(sigma/1e-9,2),\"nm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Freqency spacing = 81.0 GHz\n", "Wavelegth spacing = 0.2 nm\n", "Spectral width of gain = 1.7 nm\n" ] } ], "prompt_number": 74 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.9, Page Number: 161" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#variable declaration\n", "Lam_bda = 900*10e-9 # wavelength of light emitted by laser diode(nm)\n", "L = 300*10e-6 #length of laser chip(um)\n", "n = 4.3 #refractive index of the laser material\n", "\n", "#calculation\n", "m = 2*L*n/Lam_bda #number of half-wavelengths\n", "delta_Lambda = (Lam_bda**2)/(2*L*n) #wavelength spacing(nm)\n", "\n", "#result\n", "print \"Number of half-wavelength spanning the region betwen mirror = \" , round(m)\n", "print \"Wavelength spacing between lasing modes = \" , round(delta_Lambda*1e8,1),\"nm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Number of half-wavelength spanning the region betwen mirror = 2867.0\n", "Wavelength spacing between lasing modes = 0.3 nm\n" ] } ], "prompt_number": 3 } ], "metadata": {} } ] }