{

 "metadata": {

  "name": "",

  "signature": "sha256:211878047ac07bbe36923a59422db9a2025fd46f216dee8cd476326a7778bb6a"

 },

 "nbformat": 3,

 "nbformat_minor": 0,

 "worksheets": [

  {

   "cells": [

    {

     "cell_type": "heading",

     "level": 1,

     "metadata": {},

     "source": [

      "Chapter02: Optical Fiber for Telecommunication"

     ]

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      " Ex2.2.1:Pg-2.4"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#  Given\n",

      "import math\n",

      "\n",

      "alpha= 3     #  average loss     Power decreases by 50% so P(0)/P(z)= 0.5\n",

      "lamda= 900*10**-9     # wavelength\n",

      "z= 10*math.log10(0.5)/alpha     # z is the length\n",

      "z= z*-1 \n",

      "print \" The length over which power decreases by 50% in Kms= \",round(z,2) \n",

      "\n",

      "z1= 10*math.log10(0.25)/alpha       # Power decreases by 75% so P(0)/P(z)= 0.25\n",

      "z1=z1*-1     # as distance cannot be negative...\n",

      "print \" \\n\\nThe length over which power decreases by 75% in Kms= \",round(z1,2) \n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " The length over which power decreases by 50% in Kms=  1.0\n",

        " \n",

        "\n",

        "The length over which power decreases by 75% in Kms=  2.01\n"

       ]

      }

     ],

     "prompt_number": 4

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.2.2:Pg-2.5"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "# Given\n",

      "\n",

      "z=30.0     # Length of the fibre in kms\n",

      "alpha= 0.8    # in dB\n",

      "P0= 200.0      # Power launched in uW\n",

      "pz= P0/10**(alpha*z/10)      \n",

      "print \" The output power in  uW =\",round(pz,4) \n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " The output power in  uW = 0.7962\n"

       ]

      }

     ],

     "prompt_number": 7

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.2.3:Pg-2.6"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "# Given\n",

      "import math \n",

      "\n",

      "z=8.0      # fibre length\n",

      "p0= 120*10**-6    # power launched\n",

      "pz= 3*10**-6 \n",

      "alpha= 10*math.log10(p0/pz)   #  overall attenuation\n",

      "print \" The overall attenuation in dB =\",round(alpha,2) \n",

      "alpha = alpha/z      #  attenuation per km\n",

      "alpha_new= alpha *10     #  attenuation for 10kms\n",

      "total_attenuation = alpha_new + 9    # 9dB because of splices\n",

      "print \" \\n\\nThe total attenuation in dB =\",int(total_attenuation) \n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " The overall attenuation in dB = 16.02\n",

        " \n",

        "\n",

        "The total attenuation in dB = 29\n"

       ]

      }

     ],

     "prompt_number": 9

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.2.4:Pg-2.6"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      " # Given\n",

      " \n",

      "z=12.0     # fibre length\n",

      "alpha = 1.5 \n",

      "p0= 0.3 \n",

      "pz= p0/10**(alpha*z/10) \n",

      "pz=pz*1000    # formatting pz in nano watts...\n",

      "print \" The power at the output of the cable in W = \",round(pz,2),\"x 10^-9\" \n",

      "alpha_new= 2.5 \n",

      "pz=pz/1000   # pz in uWatts...\n",

      "p0_new= 10**(alpha_new*z/10)*pz \n",

      "print \" \\n\\nThe Input power in uW= \",round(p0_new,2) \n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " The power at the output of the cable in W =  4.75 x 10^-9\n",

        " \n",

        "\n",

        "The Input power in uW=  4.75\n"

       ]

      }

     ],

     "prompt_number": 16

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.2.5:Pg-2.7"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "# Given\n",

      "import math\n",

      "\n",

      "p0=150*10**-6      # power input\n",

      "z= 10.0    # fibre length in km\n",

      "pz= -38.2   #  in dBm...\n",

      "pz= 10**(pz/10)*1*10**-3 \n",

      "alpha_1= 10/z *math.log10(p0/pz)          # attenuation in 1st window\n",

      "print \" Attenuation is 1st window in dB/Km =\",round(alpha_1,2) \n",

      "alpha_2= 10/z *math.log10(p0/(47.5*10**-6))          # attenuation in 2nd window\n",

      "print \" \\n\\nAttenuation is 2nd window in dB/Km =\",round(alpha_2,2) \n",

      "alpha_3= 10/z *math.log10(p0/(75*10**-6))          # attenuation in 3rd window\n",

      "print \" \\n\\nAttenuation is 3rd window in dB/Km =\",round(alpha_3,2) \n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " Attenuation is 1st window in dB/Km = 3.0\n",

        " \n",

        "\n",

        "Attenuation is 2nd window in dB/Km = 0.5\n",

        " \n",

        "\n",

        "Attenuation is 3rd window in dB/Km = 0.3\n"

       ]

      }

     ],

     "prompt_number": 18

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "\n",

      "Ex2.2.6:Pg-2.8"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Given\n",

      "import math\n",

      "p0=3*10**-3 \n",

      "pz=3*10**-6 \n",

      "alpha= 0.5 \n",

      "z= math.log10(p0/pz)/(alpha/10) \n",

      "print \" The Length of the fibre in Km =\",int(z)\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " The Length of the fibre in Km = 60\n"

       ]

      }

     ],

     "prompt_number": 20

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.2.7:Pg-2.9"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Given\n",

      "import math\n",

      "\n",

      "z= 10.0 \n",

      "p0= 100*10**-6    #  input power\n",

      "pz=5*10**-6       # output power\n",

      "alpha = 10*math.log10(p0/pz)      # total attenuation\n",

      "print \" The overall signal attenuation in dB = \",round(alpha,2) \n",

      "alpha = alpha/z      #  attenuation per km\n",

      "print \" \\n\\nThe attenuation per Km in dB/Km = \",round(alpha,2)\n",

      "z_new = 12.0 \n",

      "splice_attenuation = 11*0.5 \n",

      "cable_attenuation = alpha*z_new \n",

      "total_attenuation = splice_attenuation+cable_attenuation \n",

      "print \" \\n\\nThe overall signal attenuation for 12Kms in dB = \",round(total_attenuation,1) \n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " The overall signal attenuation in dB =  13.01\n",

        " \n",

        "\n",

        "The attenuation per Km in dB/Km =  1.3\n",

        " \n",

        "\n",

        "The overall signal attenuation for 12Kms in dB =  21.1\n"

       ]

      }

     ],

     "prompt_number": 22

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.2.8:Pg-2.15"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Given\n",

      "import math\n",

      "Tf = 1400.0     # fictive temperature\n",

      "BETA = 7*10**-11 \n",

      "n= 1.46         # RI \n",

      "p= 0.286     # photo elastic constant\n",

      "Kb = 1.381*10**-23       # Boltzmann's constant\n",

      "lamda = 850*10**-9    # wavelength\n",

      "alpha_scat = 8*math.pi**3*n**8*p**2*Kb*Tf*BETA/(3*lamda**4) \n",

      "l= 1000      # fibre length\n",

      "TL = exp(-alpha_scat*l)    # transmission loss\n",

      "attenuation = 10*math.log10(1/TL) \n",

      "print \" The attenuation in dB/Km =\",round(attenuation,3)\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " The attenuation in dB/Km = 1.572\n"

       ]

      }

     ],

     "prompt_number": 25

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.3.1:Pg-2.20"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Given\n",

      "import math\n",

      "alpha = 2 \n",

      "n1= 1.5  \n",

      "a= 25*10**-6 \n",

      "lamda= 1.3*10**-6 \n",

      "M= 0.5 \n",

      "NA= math.sqrt(0.5*2*1.3**2/(math.pi**2*25**2)) \n",

      "Rc= 3*n1**2*lamda/(4*math.pi*NA**3) \n",

      "Rc=Rc*1000   #  converting into um.....\n",

      "print \" The radius of curvature in um =\",round(Rc,2) \n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " The radius of curvature in um = 153.98\n"

       ]

      }

     ],

     "prompt_number": 28

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.5.1:Pg-2.25"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Given\n",

      "lamda = 850 *10**-9 \n",

      "sigma= 45*10**-9 \n",

      "L= 1 \n",

      "M= 0.025/(3*10**5*lamda) \n",

      "sigma_m= sigma*L*M \n",

      "sigma_m= sigma_m*10**9   #  formatting in ns/km....\n",

      "print \" The Pulse spreading in ns/Km =\",round(sigma_m,2) \n",

      "print \" \\n\\nNOTE*** - The answer in text book is wrongly calculated..\" \n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " The Pulse spreading in ns/Km = 4.41\n",

        " \n",

        "\n",

        "NOTE*** - The answer in text book is wrongly calculated..\n"

       ]

      }

     ],

     "prompt_number": 30

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.5.2:Pg-2.26"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Given\n",

      "\n",

      "lamda= 2*10**-9 \n",

      "sigma = 75 \n",

      "D_mat= 0.03/(3*10**5*2) \n",

      "sigma_m= 2*1*D_mat \n",

      "sigma_m=sigma_m*10**9   # Fornamtting in ns/Km\n",

      "print \" The Pulse spreading in ns/Km =\",int(sigma_m)\n",

      "D_mat_led= 0.025/(3*10**5*1550) \n",

      "sigma_m_led = 75*1*D_mat_led*10**9   # in ns/Km\n",

      "print \" \\n\\nThe Pulse spreading foe LED is ns/Km =\",round(sigma_m_led,2) \n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " The Pulse spreading in ns/Km = 100\n",

        " \n",

        "\n",

        "The Pulse spreading foe LED is ns/Km = 4.03\n"

       ]

      }

     ],

     "prompt_number": 31

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.5.3:Pg-2.26"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Given\n",

      "\n",

      "lamda = 850 \n",

      "sigma= 20 \n",

      "D_mat = 0.055/(3*10**5*lamda) \n",

      "sigma_m= sigma*1*D_mat \n",

      "D_mat=D_mat*10**12   #  in Ps...\n",

      "sigma_m=sigma_m*10**9   # in ns #  # \n",

      "print \" The material Dispersion in Ps/nm-Km =\",round(D_mat,2) \n",

      "print \" \\n\\nThe Pulse spreading in ns/Km =\",round(sigma_m,4) \n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " The material Dispersion in Ps/nm-Km = 215.69\n",

        " \n",

        "\n",

        "The Pulse spreading in ns/Km = 4.3137\n"

       ]

      }

     ],

     "prompt_number": 34

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.5.4:Pg-2.30"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Given\n",

      "n2= 1.48  \n",

      "dele = 0.2 \n",

      "lamda = 1320 \n",

      "Dw = -n2*dele*0.26/(3*10**5*lamda) \n",

      "Dw=Dw*10**10   # converting in math.picosecs....\n",

      "print \" The waveguide dispersion in math.picosec/nm.Km =\",round(Dw,3) \n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " The waveguide dispersion in math.picosec/nm.Km = -1.943\n"

       ]

      }

     ],

     "prompt_number": 37

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.6.1:Pg-2.34"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Given\n",

      "t= 0.1*10**-6 \n",

      "L= 12 \n",

      "B_opt= 1/(2*t) \n",

      "B_opt=B_opt/1000000   # converting from Hz to MHz\n",

      "print \" The maximum optical bandwidth in MHz. =\",int(B_opt) \n",

      "dele= t/L     # Pulse broadening\n",

      "dele=dele*10**9   #  converting in ns...\n",

      "print \" \\n\\nThe pulse broadening per unit length in ns/Km =\",round(dele,2) \n",

      "BLP= B_opt*L   # BW length product\n",

      "print \" \\n\\nThe Bandwidth-Length Product in MHz.Km =\",int(BLP) \n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " The maximum optical bandwidth in MHz. = 5\n",

        " \n",

        "\n",

        "The pulse broadening per unit length in ns/Km = 8.33\n",

        " \n",

        "\n",

        "The Bandwidth-Length Product in MHz.Km = 60\n"

       ]

      }

     ],

     "prompt_number": 38

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.6.2:Pg-2.34"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Given\n",

      "t= 0.1*10**-6 \n",

      "L= 10.0 \n",

      "B_opt= 1/(2*t) \n",

      "B_opt=B_opt/1000000   # converting from Hz to MHz\n",

      "print \" The maximum optical bandwidth in MHz. =\",int(B_opt) \n",

      "dele= t/L \n",

      "dele=dele/10**-6   # converting in us...\n",

      "print \" \\n\\nThe dispersion per unit length in us/Km =\",round(dele,2) \n",

      "BLP= B_opt*L \n",

      "print \" \\n\\nThe Bandwidth-Length product in MHz.Km =\",int(BLP) \n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " The maximum optical bandwidth in MHz. = 5\n",

        " \n",

        "\n",

        "The dispersion per unit length in us/Km = 0.01\n",

        " \n",

        "\n",

        "The Bandwidth-Length product in MHz.Km = 50\n"

       ]

      }

     ],

     "prompt_number": 40

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.6.3:Pg-2.35"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Given\n",

      "t= 0.1*10**-6 \n",

      "L=15 \n",

      "B_opt= 1/(2*t) \n",

      "B_opt=B_opt/1000000   # converting from Hz to MHz\n",

      "print \" The maximum optical bandwidth in MHz. =\",int(B_opt) \n",

      "dele= t/L*10**9   # in ns...\n",

      "print \" \\n\\nThe dispersion per unit length in ns/Km =\",round(dele,2) \n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " The maximum optical bandwidth in MHz. = 5\n",

        " \n",

        "\n",

        "The dispersion per unit length in ns/Km = 6.67\n"

       ]

      }

     ],

     "prompt_number": 42

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.6.4:Pg-2.35"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Given\n",

      "lamda = 0.85*10**-6 \n",

      "rms_spect_width = 0.0012*lamda \n",

      "sigma_m= rms_spect_width*1*98.1*10**-3 \n",

      "sigma_m=sigma_m*10**9   #  converting in ns...\n",

      "print \" The Pulse Broadening due to material dispersion in ns/Km =\",round(sigma_m,2) \n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " The Pulse Broadening due to material dispersion in ns/Km = 0.1\n"

       ]

      }

     ],

     "prompt_number": 43

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.6.5:Pg-2.35"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Given\n",

      "import math\n",

      "\n",

      "L= 5.0   # in KM\n",

      "n1= 1.5 \n",

      "dele= 0.01 \n",

      "c= 3*10**8   #  in m/s\n",

      "delta_t = (L*n1*dele)/c \n",

      "delta_t=delta_t*10**12   # convertin to nano secs...\n",

      "print \" The delay difference in ns =\",round(delta_t,1)\n",

      "sigma= L*n1*dele/(2*math.sqrt(3)*c) \n",

      "sigma=sigma*10**12   # convertin to nano secs...\n",

      "print \" \\n\\nThe r.m.s pulse broadening in ns =\",round(sigma,2) \n",

      "B= 0.2/sigma*1000   # in Mz\n",

      "print \" \\n\\nThe maximum bit rate in MBits/sec =\",round(B,2) \n",

      "BLP = B*5 \n",

      "print \" \\n\\nThe Bandwidth-Length in MHz.Km =\",round(BLP,2) \n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " The delay difference in ns = 250.0\n",

        " \n",

        "\n",

        "The r.m.s pulse broadening in ns = 72.17\n",

        " \n",

        "\n",

        "The maximum bit rate in MBits/sec = 2.77\n",

        " \n",

        "\n",

        "The Bandwidth-Length in MHz.Km = 13.86\n"

       ]

      }

     ],

     "prompt_number": 47

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.6.6:Pg-2.36"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Given\n",

      "import math\n",

      "del_t_inter = 5*1 \n",

      "del_t_intra = 50*80*1 \n",

      "total_dispersion = math.sqrt(5**2 + 0.4**2) \n",

      "print \" Total dispersion in ns =\",round(total_dispersion,3) "

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " Total dispersion in ns = 5.016\n"

       ]

      }

     ],

     "prompt_number": 49

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.7.1:Pg-2.37"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Given\n",

      "t= 0.1*10**-6 \n",

      "L=15 \n",

      "dele= t/L*10**9    # convertin to nano secs...\n",

      "print \" The Pulse Dispersion in ns =\",round(dele,2) \n",

      "B_opt= 1/(2*t)/10**6   # convertin to nano secs...\n",

      "print \" \\n\\n The maximum possible Bandwidth in MHz =\",int(B_opt) \n",

      "BLP = B_opt*L \n",

      "print \" \\n\\nThe BandwidthLength product in MHz.Km =\",int(BLP) \n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " The Pulse Dispersion in ns = 6.67\n",

        " \n",

        "\n",

        " The maximum possible Bandwidth in MHz = 5\n",

        " \n",

        "\n",

        "The BandwidthLength product in MHz.Km = 75\n"

       ]

      }

     ],

     "prompt_number": 51

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.7.2:Pg-2.38"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Given\n",

      "L= 6 \n",

      "n1= 1.5 \n",

      "delt= 0.01 \n",

      "delta_t = L*n1*delt/(3*10**8)*10**12   # convertin to nano secs...\n",

      "print \" The delay difference in ns =\",int(delta_t) \n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " The delay difference in ns = 300\n"

       ]

      }

     ],

     "prompt_number": 52

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.7.3:Pg-2.39"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Given\n",

      "import math\n",

      "Lb= 0.09 \n",

      "lamda= 1.55*10**-6 \n",

      "delta_lamda = 1*10**-9 \n",

      "Bf= lamda/Lb \n",

      "Lbc= lamda**2/(Bf*delta_lamda) \n",

      "print \" The modal Bifriengence in meters  =\",round(Lbc,2) \n",

      "beta_xy= 2*math.pi/Lb \n",

      "print \" \\n\\nThe difference between propogation constants  =\",round(beta_xy,2) \n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " The modal Bifriengence in meters  = 139.5\n",

        " \n",

        "\n",

        "The difference between propogation constants  = 69.81\n"

       ]

      }

     ],

     "prompt_number": 53

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.7.4:Pg-2.39"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Given\n",

      "\n",

      "t= 0.1*10**-6 \n",

      "B_opt= 1/(2*t)/1000000 \n",

      "print \" The maximum possible Bandwidth in MHz =\",int(B_opt) \n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " The maximum possible Bandwidth in MHz = 5\n"

       ]

      }

     ],

     "prompt_number": 54

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.7.5:Pg-2.40"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Given\n",

      "\n",

      "t= 0.1*10**-6 \n",

      "B_opt= 1/(2*t)/1000000 \n",

      "print \" The maximum possible Bandwidth in MHz =\",int(B_opt) \n",

      "\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " The maximum possible Bandwidth in MHz = 5\n"

       ]

      }

     ],

     "prompt_number": 55

    }

   ],

   "metadata": {}

  }

 ]

}