{ "metadata": { "name": "", "signature": "sha256:a1fc86a1745331cbb94487da02761804f9fca4fd4c628ee53c6bfd5a750d81a6" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 8: Optical Fiber Communication System" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1: PgNo-339" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable initialisation\n", "tr=40.0 # rediative life time in ns\n", "tnr=60.0 # nonrediative life time in ns\n", "i=35*math.pow(10,-3) # drive current in amp\n", "y=0.85*math.pow(10,-6)# wavelength in m\n", "h=6.626*math.pow(10,-34)# plank constant\n", "c=3*math.pow(10,8)# the speed of light in m/s\n", "eq=1.602*math.pow(10,-19)# charge\n", "\n", "# calculations\n", "t=tr*tnr/(tr+tnr)# total carrier recombination lifetime ns\n", "ni=t/tr # internal quantam efficiency\n", "pil=(ni*h*c*i)/(eq*y)# internal power in watt\n", "p_int=pil*math.pow(10,3)# internal power in mW\n", "\n", "# Results\n", "print ('%s %.f %s' %(\" The total carrier recombination lifetime = \",t,\"ns\"))\n", "print ('%s %.2f %s' %(\"\\n The internal power = \",p_int,\"mW\"))\n", "print (\"\\n The answer is wrong in textbook \")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The total carrier recombination lifetime = 24 ns\n", "\n", " The internal power = 30.66 mW\n", "\n", " The answer is wrong in textbook \n" ] } ], "prompt_number": 33 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2: PgNo-341" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Initialisation of variables\n", "tr=30.0 # rediative life time in ns\n", "tnr=50.0 # nonrediative life time in ns\n", "i=40*math.pow(10,-3) # drive current in amp\n", "pil=28.4*math.pow(10,-3) # internal power in watt\n", "h=6.626*math.pow(10,-34) # plank constant\n", "c=3*math.pow(10,8) # the speed of light in m/s\n", "eq=1.602*math.pow(10,-19) # charge\n", "t=tr*tnr/(tr+tnr) # total carrier recombination lifetime ns\n", "ni=t/tr # internal quantam efficiency\n", "y=(ni*h*c*i)/(eq*pil) # peak emission wavelength in m\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" The total carrier recombination lifetime = \",t,\"ns\"))\n", "print ('%s %.2f %s' %(\"\\n The peak emission wavelength = \",y*pow(10,6),\"um\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The total carrier recombination lifetime = 18.75 ns\n", "\n", " The peak emission wavelength = 1.09 um\n" ] } ], "prompt_number": 34 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3: PgNo-345" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable initialisation\n", "nx=3.6 # refractive index\n", "Fn=0.68 # transmission factor\n", "pe_pi=(Fn)/(4*math.pow(nx,2))\n", "pi_p=0.3\n", "nep=pe_pi*pi_p # external power efficiency\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\"The external power efficiency = \",nep*100,\"%\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The external power efficiency = 0.39 %\n" ] } ], "prompt_number": 35 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4: PgNo-347" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable initialisation\n", "n=3.6 # core refractive index\n", "NA=0.15 # numerical aperture\n", "nc=math.pow(NA,2) # coupling efficiency\n", "l_s=-10*math.log(nc)/math.log(10) # loss in db\n", "pe_pi=0.023*0.0013 # from ex 8.3\n", "pc=-10*math.log(pe_pi)/math.log(10) # loss in decibels relative to Pint\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" The coupling efficiency = \",nc*100,\"%\"))\n", "print ('%s %.3f %s' %(\"\\n The loss = \",l_s,\"db\"))\n", "print ('%s %.2f %s' %(\"\\n The loss in decibels relative to Pint= \",pc,\"db\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The coupling efficiency = 2.25 %\n", "\n", " The loss = 16.478 db\n", "\n", " The loss in decibels relative to Pint= 45.24 db\n" ] } ], "prompt_number": 36 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5: PgNo-348" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable initialisation\n", "r=45*math.pow(10,-6) # radius in m\n", "NA=0.3 # numerical aperture\n", "rd=40 # radiance\n", "A=3.14*math.pow((r*100),2) # area in cm^2\n", "pe=3.14*(1-r)*A*rd*math.pow(NA,2) # optical power coupled into the fiber\n", "Pe=pe*math.pow(10,4) # optical power coupled into the fiber uW\n", "\n", "# Results\n", "print ('%s %.3f %s' %(\" The optical power coupled into the fiber = \",Pe,\"uW\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The optical power coupled into the fiber = 7.187 uW\n" ] } ], "prompt_number": 37 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6: PgNo-351" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable initialisation\n", "pc=150*math.pow(10,-6) # coupling power W\n", "p=20*math.pow(10,-3)*2 # optical power W\n", "npc=pc/p # overall efficiency\n", "Npc=npc*100 # percentage of overall efficiency\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" The percentage of overall efficiency = \",Npc,\"%\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The percentage of overall efficiency = 0.37 %\n" ] } ], "prompt_number": 38 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7: PgNo-357" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable initialisation\n", "n=1.5 # refractive index\n", "L=0.05 #crystal length in m\n", "y=0.5*math.pow(10,-6) # wavelength in m\n", "c=3*math.pow(10,8) # speed of light in m/s\n", "q=2*n*L/y # the number of longitudinal modes\n", "df=c/(2*n*L) # frequency separation of the modes in Hz\n", "Df=df/math.pow(10,9) # frequency separation of the modes in GHz\n", "\n", "# Results\n", "print ('%s %d ' %(\" The number of longitudinal modes = \",q))\n", "print ('%s %.2f %s' %(\"\\n The frequency separation of the modes = \",Df,\"GHz\"))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The number of longitudinal modes = 300000 \n", "\n", " The frequency separation of the modes = 2.00 GHz\n" ] } ], "prompt_number": 39 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8: PgNo-358" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable declaration\n", "Eg=1.43 # bandgap energy in eV\n", "dy=0.15*math.pow(10,-9);\n", "c=3*math.pow(10,8) # speed of light in m/s\n", "y=1.24/Eg # in um\n", "y1=y*math.pow(10,-6) # wavelength of optical emission in m\n", "df=(c*dy)/math.pow(y1,2) # the line width in Hz\n", "Df=df/math.pow(10,9) # the line width in GHz\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" The wavelength of optical emission = \",y,\"um\"))\n", "print ('%s %.4f %s' %(\"\\n The frequency separation of the modes = \",Df,\"GHz\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The wavelength of optical emission = 0.87 um\n", "\n", " The frequency separation of the modes = 59.8468 GHz\n" ] } ], "prompt_number": 40 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9: PgNo-362" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable initialisation\n", "n=3.6 # refractive index\n", "c=3*math.pow(10,8)# speed of light in m/s\n", "y=0.85*math.pow(10,-6)# wavelength in m\n", "df=275*math.pow(10,9) # frequency separation of the modes in Hz\n", "L=c/(2*n*df) # crystal length in m\n", "L1=L*math.pow(10,6) # crystal length in um\n", "q=2*n*L/y # the number of longitudinal modes\n", "\n", "# results\n", "print ('%s %.2f %s' %(\" The crystal length = \",L1,\"um\"))\n", "print ('%s %d' %(\"\\n The the number of longitudinal modes = \",int(q)))\n", "print (\"\\n answer is wrong in textbook \")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The crystal length = 151.52 um\n", "\n", " The the number of longitudinal modes = 1283\n", "\n", " answer is wrong in textbook \n" ] } ], "prompt_number": 41 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10: PgNo-364" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Initialisation of variables\n", "nt=0.20# total efficiency\n", "Eg=1.43# bandgap energy in eV\n", "V=2.2# applied voltage in volts\n", "nep=(nt*Eg)/V# external power efficiency\n", "Nep=nep*100# percentage of external power efficiency\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" The external power efficiency = \",Nep,\"%\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The external power efficiency = 13.00 %\n" ] } ], "prompt_number": 42 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11: PgNo-367" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Initialisation of variables\n", "h=0.35*math.pow(10,-3)# irradiance W/cm^2\n", "po=0.45*math.pow(10,-3)# power output in watt\n", "d=1.5 # separation distance in cm\n", "x=math.sqrt((4*po)/(3.14*math.pow(d,2)*h)) # divergence angle in radians\n", "X=(x*180)/3.14 # divergence angle in degree\n", "\n", "# Results\n", "print ('%s %.3f %s' %(\" The divergence angle = \",X,\"degree \"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The divergence angle = 48.909 degree \n" ] } ], "prompt_number": 43 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12: PgNo-369" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Initialisation of variables\n", "ni=0.09 # normal efficiency\n", "d=2*2.54 # separation distance in cm\n", "x=0.2 # divergence angle in radians\n", "vf=2.0 # forward voltage in volts\n", "i_f=65*math.pow(10,-3) # forward current in amp\n", "pil=vf*i_f # input power in Watt\n", "po=ni*pil # output power in Watt\n", "H=4*po/(3.14*math.pow(d,2)*math.pow(x,2)) # irradiance in watt/cm^2\n", "H1=H*1000 # irradiance in mwatt/cm^2\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" The irradiance = \",H1,\"mwatt/cm^2 \"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The irradiance = 14.44 mwatt/cm^2 \n" ] } ], "prompt_number": 44 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13: PgNo-372" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# variable declaration\n", "tr=3.5 # relative life time in ms\n", "tnr=50 # nonrelative life time in ms\n", "ni=tnr/(tr+tnr) # internal quantam efficiency\n", "\n", "# results\n", "print ('%s %.2f %s' %(\" The internal quantam efficiency = \",ni*100,\"%\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The internal quantam efficiency = 93.46 %\n" ] } ], "prompt_number": 45 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14: PgNo-375" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# initialisation of variables\n", "ni=0.15 # internal quantam efficiency\n", "vf=2.0 # forward voltage in volts\n", "i_f=15*math.pow(10,-3) # forward current in amp\n", "x=25 # acceptance angle in degree\n", "pil=vf*i_f # input power in Watt\n", "po=ni*pil # output power in Watt\n", "NA=(math.sin(x*math.pi/180))\n", "nc=math.pow(NA,2) # numerical aperture\n", "pf=nc*po # optical power coupled into optical fiber in w\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" The optical power coupled into optical fiber = \",pf*1000,\"mW\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The optical power coupled into optical fiber = 0.80 mW\n" ] } ], "prompt_number": 46 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15: PgNo-378" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Initialisation of variables\n", "tnr=10 # nonrediative life time in ns\n", "n_inj=0.80 # injection efficiency\n", "n_ex=0.60 # extraction efficiency\n", "nt=0.025 # total efficiency\n", "nr=nt/(n_inj*n_ex) # non rediative life time in ns\n", "tr=((1/nr)-1)*tnr # rediative life time in ns\n", "# Results\n", "print ('%s %.1f %s' %(\" The rediative life time = \",tr,\"ns\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The rediative life time = 182.0 ns\n" ] } ], "prompt_number": 47 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16: PgNo-381" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable initialisation\n", "tr=30*math.pow(10,-9) # rise time in s\n", "Bw=0.35/tr # bandwidth in Hz\n", "\n", "# Results\n", "print ('%s %.3f %s' %(\" The bandwidth = \",Bw/math.pow(10,6),\"MHz\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The bandwidth = 11.667 MHz\n" ] } ], "prompt_number": 48 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17: PgNo-384" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Initialisation of variables\n", "y=630*math.pow(10,-9)# operating wavelength in m\n", "w=25*math.pow(10,-6) # spot size in m\n", "x=2*y/(math.pi*w) # divergence angle in radians\n", "x1=x*180/math.pi # divergence angle in degree\n", "\n", "# Results\n", "print ('%s %.3f %s' %(\" The divergence angle = \",x,\"radians\"))\n", "print ('%s %.3f %s' %(\"\\n The divergence angle = \",x1,\"degree\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The divergence angle = 0.016 radians\n", "\n", " The divergence angle = 0.919 degree\n" ] } ], "prompt_number": 49 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18: PgNo-388" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable initialisation\n", "y1=550*math.pow(10,-3)# peak of eyes response in um\n", "y2=10.6 # standard wavelength in um\n", "y3=2.39 # predominant IR line of He-Ne laser in um\n", "E1=1.24/y1 # energy in electron volts\n", "E2=1.24/y2 # energy in electron volts\n", "E3=1.24/y3 # energy in electron volts\n", "\n", "# results\n", "print ('%s %.3f %s' %(\" The energy = \",E1,\"electron volts\"))\n", "print ('%s %.3f %s' %(\"\\n The energy = \",E2,\"electron volts\"))\n", "print ('%s %.3f %s' %(\"\\n The energy = \",E3,\"electron volts\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The energy = 2.255 electron volts\n", "\n", " The energy = 0.117 electron volts\n", "\n", " The energy = 0.519 electron volts\n" ] } ], "prompt_number": 50 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19: PgNo-391" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# variable initialisation\n", "Eg=1.4 # energy in electron volts\n", "y=1.24/Eg # cut off wavelength in um\n", "y1=y*1000 # cut off wavelength in nm\n", "# Results\n", "print ('%s %.4f %s' %(\" The cut off wavelength = \",y1,\"nm\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The cut off wavelength = 885.7143 nm\n" ] } ], "prompt_number": 51 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 20: PgNo-394" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable initialisation\n", "y=1200*math.pow(10,-9)# operating wavelength in m\n", "w=5*math.pow(10,-6)# spot size in m\n", "x=2*y/(math.pi*w)# divergence angle in radians\n", "x1=x*180/math.pi # divergence angle in degree\n", "\n", "# Results\n", "print ('%s %.3f %s' %(\" The divergence angle = \",x,\"radians\"))\n", "print ('%s %.3f %s' %(\"\\n The divergence angle = \",x1,\"degree\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The divergence angle = 0.153 radians\n", "\n", " The divergence angle = 8.754 degree\n" ] } ], "prompt_number": 52 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 21: PgNo-395" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Initialisation of variables\n", "n1=1.48 # core refractive index\n", "n2=1.46 # cladding refractive index \n", "NA=math.sqrt(math.pow(n1,2)-math.pow(n2,2)) # numerical aperture\n", "xa=(math.asin(NA))*(180/math.pi) # acceptance angle in degree\n", "nc=math.pow(NA,2) # coupling efficiency\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" The acceptance angle = \",xa,\"degree\"))\n", "print ('%s %.2f %s' %(\"\\n The coupling efficiency = \",nc*100,\"%\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The acceptance angle = 14.03 degree\n", "\n", " The coupling efficiency = 5.88 %\n" ] } ], "prompt_number": 53 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 22: PgNo-398" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Initialisation of variables\n", "c=3*math.pow(10,8) # speed of light in m/s\n", "n=3.66 # for GaAs\n", "L=150*math.pow(10,-6) # cavity length in m\n", "dv=c/(2*n*L) #frequency separation in Hz\n", "dv1=dv/math.pow(10,12) # frequency separation in GHz\n", "h=6.64*math.pow(10,-34) # plank constant\n", "q=1.6*math.pow(10,-19) # charge of an electron\n", "dE=(h*dv)/q # energy separation eV\n", "\n", "# Results\n", "print ('%s %.4f %s' %(\" The frequency separation = \",dv1,\"GHz\"))\n", "print ('%s %.3f %s' %(\"\\n The energy separation = \",dE*1000,\"meV\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The frequency separation = 0.2732 GHz\n", "\n", " The energy separation = 1.134 meV\n" ] } ], "prompt_number": 54 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 23: PgNo-400" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# variable initialisation\n", "po=2*math.pow(10,-3)# optical power in watts\n", "I=100*math.pow(10,-3)# current in amp\n", "V=2 # applied voltage in volt\n", "pe=I*V # electrical power in watts\n", "n=(po/pe)*100 # conversion efficiency\n", "# Results\n", "print ('%s %.2f %s' %(\" The conversion efficiency = \",n,\"%\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The conversion efficiency = 1.00 %\n" ] } ], "prompt_number": 55 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 24: PgNo-403" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# variable initialisation\n", "c=3*math.pow(10,8) # speed of light in m/s\n", "h=6.64*math.pow(10,-34) # plank constant\n", "Eg=1.43 # gap energy in eV\n", "y=(1.24*math.pow(10,-6))/Eg # wavelength in m\n", "dy=0.1*math.pow(10,-9) # in m\n", "df=(dy*c)/math.pow(y,2) # width in Hz\n", "# Results\n", "print ('%s %.3f %s' %(\" The wavelength = \",y*pow(10,6),\"um\"))\n", "print ('%s %.4f %s' %(\"\\n The width = \",df/pow(10,9),\"GHz\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The wavelength = 0.867 um\n", "\n", " The width = 39.8979 GHz\n" ] } ], "prompt_number": 56 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 25: PgNo-407" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable declaration\n", "tr=25.0 # rediative life time in ns\n", "tnr=90.0 # nonrediative life time in ns\n", "i=3.5*math.pow(10,-3) # drive current in amp\n", "y=1.31*math.pow(10,-6) # wavelength in m\n", "h=6.625*math.pow(10,-34) # plank constant\n", "c=3*math.pow(10,8) # the speed of light in m/s\n", "eq=1.6*math.pow(10,-19 )# charge\n", "t=tr*tnr/(tr+tnr) # total carrier recombination lifetime ns\n", "ni=t/tr # internal quantam efficiency\n", "pil=(ni*h*c*i)/(eq*y) # internal power in watt\n", "p_int=pil*pow(10,3) # internal power in mW\n", "P=p_int/(ni*(ni+1)) # power emitted in mW\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" The total carrier recombination lifetime = \",t,\"ns\"))\n", "print ('%s %.2f ' %(\"\\n The internal quantam efficiency = \", ni))\n", "print ('%s %.2f %s' %(\"\\n The internal power = \",p_int,\"mW\"))\n", "print ('%s %.2f %s' %(\"\\n The power emitted = \",P,\"mW\"))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The total carrier recombination lifetime = 19.57 ns\n", "\n", " The internal quantam efficiency = 0.78 \n", "\n", " The internal power = 2.60 mW\n", "\n", " The power emitted = 1.86 mW\n" ] } ], "prompt_number": 57 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 26: PgNo-409" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable initialisation\n", "nt=0.18 # total efficiency\n", "Eg=1.43 # band gape energy eV\n", "V=2.5 # appied voltage in volt\n", "n_ex=(nt*(Eg/V))*100 # external efficiency\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" The external efficiency = \",n_ex,\"%\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The external efficiency = 10.30 %\n" ] } ], "prompt_number": 58 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 27: PgNo-411" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Initialisation of variables\n", "c=3*math.pow(10,8) # speed of light in m/s\n", "n=3.6 # for GaAs\n", "df=278*math.pow(10,9) # separation in Hz\n", "y=0.87*math.pow(10,-6) # wavelength in m\n", "L=c/(2*n*df) # cavity length in m\n", "l=L*math.pow(10,6) # cavity length in um\n", "L1=math.floor(l)*math.pow(10,-6) # cavity length in m\n", "q=(2*n*L1)/y # number of longitudinal modes\n", "# Results\n", "print ('%s %.3f %s' %(\" The cavity length = \",l,\"um\"))\n", "print ('%s %d' %( \"\\n The number of longitudinal modes = \",int(q)))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The cavity length = 149.880 um\n", "\n", " The number of longitudinal modes = 1233\n" ] } ], "prompt_number": 59 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 28: PgNo-415" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Initialisation of variables\n", "ac=14 # acceptance angle in degree\n", "nc=math.pow((math.sin(ac*math.pi/180)),2) # coupling efficiency\n", "l_s=-10*math.log(nc)/math.log(10) # loss in decibels\n", "\n", "# results\n", "print ('%s %.3f ' %(\" The coupling efficiency = \",nc))\n", "print ('%s %.3f %s' %(\"\\n The loss = \",l_s,\"decibels\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The coupling efficiency = 0.059 \n", "\n", " The loss = 12.326 decibels\n" ] } ], "prompt_number": 60 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 29: PgNo-417" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable initialisation\n", "c=3*math.pow(10,8)# speed of light in m/s\n", "n=3.7 # for GaAs\n", "L=500*math.pow(10,-6) # cavity length in m\n", "y=850*math.pow(10,-9)\n", "df=c/(2*n*L) #frequency separation in Hz\n", "df1=df/math.pow(10,9) # frequency separation in GHz\n", "dy=(y*y)/(2*L*n) # wavelength in m\n", "dy1=dy*math.pow(10,9) # wavelength in nm\n", "\n", "# Resultsh\n", "print ('%s %.4f %s' %(\" The frequency separation = \",df1,\"GHz\"))\n", "print ('%s %.3f %s' %(\"\\n The wavelength separation = \",dy1,\"nm\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The frequency separation = 81.0811 GHz\n", "\n", " The wavelength separation = 0.195 nm\n" ] } ], "prompt_number": 61 } ], "metadata": {} } ] }