{ "metadata": { "name": "", "signature": "sha256:ab3713dc22f25eef68710ebd9039d7fba92418b0de95b0ba48c70d6376545f8e" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 2- Optical Fiber" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1: PgNo- 18" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable declaration\n", "n1=1.55 # core refractive index\n", "n2=1.50 #cladding refractive index\n", "\n", "# Calculations\n", "x=math.asin(n2/n1) #Critical angle in radians\n", "x1=x*180/math.pi #Critical angle in degree\n", "n_a=math.sqrt(math.pow(n1,2)-math.pow(n2,2)) # Numerical aperture\n", "x_a=math.asin(n_a)*180/math.pi\n", "x_a1=math.ceil(x_a) # Acceptance angle in Degree\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" Critical angle in degree= \", x1,\"degree\"))\n", "print ('%s %.2f ' %(\"\\n Numerical aperture= \",n_a))\n", "print ('%s %.1f %s' %(\"\\n Acceptance angle in degree= \",x_a1,\"degree\"))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Critical angle in degree= 75.41 degree\n", "\n", " Numerical aperture= 0.39 \n", "\n", " Acceptance angle in degree= 23.0 degree\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2:PgNo-21" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "# Variable declaration\n", "\n", "c=3*math.pow(10,8) #speed of light in m/s\n", "v=2*math.pow(10,8) # in m/s\n", "# calculations\n", "n1=c/v\n", "x=75 # in degree\n", "n2=n1*math.sin((x*math.pi/180))\n", "n_2=1.44\n", "n_a=math.sqrt(math.pow(n1,2)-math.pow(n_2,2)) # numerical aperture\n", "\n", "# Results\n", "print ('%s %.2f' %(\" Numerical aperture = \",n_a))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Numerical aperture = 0.42\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3:PgNo-25" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variable declaration\n", "n1=1.50 # core refractive index\n", "n2=1.47 # cladding refractive index\n", "\n", "# Calculations\n", "dl=(n1-n2)/n1\n", "n_a=n1*(math.sqrt(2*dl))# numerical aperture\n", "x_a=(math.asin(n_a))*180/math.pi #acceptance angle in degree\n", "\n", "# Results\n", "print ('%s %.2f' %(\" Numerical aperture = \",n_a))\n", "print ('%s %.2f %s' %(\"\\n Acceptance angle in degree = \",x_a,\"degree\"))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Numerical aperture = 0.30\n", "\n", " Acceptance angle in degree = 17.46 degree\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4:PgNo-27" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable declaration\n", "n1=1.50 # core refractive index\n", "n2=1.45 # cladding refractive index\n", "\n", "# Calculations\n", "dl=(n1-n2)/n1\n", "n_a=n1*(math.sqrt(2*dl)) # numerical aperture\n", "x_a=(math.asin(n_a))*180/math.pi # acceptance angle in degree\n", "x_c=(math.asin(n2/n1))*180/math.pi # critical angle in degree\n", "\n", "# Results\n", "print ('%s %.2f' %(\" Numerical aperture = \",n_a))\n", "print ('%s %.2f %s' %(\"\\n acceptance angle in degree = \",x_a,\"degree\"))\n", "print ('%s %.2f %s' %(\"\\n critical angle in degree = \",x_c,\"degree\"))\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Numerical aperture = 0.39\n", "\n", " acceptance angle in degree = 22.79 degree\n", "\n", " critical angle in degree = 75.16 degree\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5:PgNo- 32" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable declaration\n", "dl=0.012\n", "n_a=0.22 # numerical aperture\n", "\n", "# Calculations\n", "n1=n_a/(math.sqrt(2*dl)) # core refractive index\n", "n2=n1-(dl*n1)# cladding refractive index\n", "\n", "# Results\n", "print ('%s %.2f' %(\" core refractive index = \",n1))\n", "print ('%s %.2f' %(\"\\n cladding refractive index = \",n2))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " core refractive index = 1.42\n", "\n", " cladding refractive index = 1.40\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6:PgNo-34" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable declaration\n", "dl=0.012\n", "n_a=0.22 # numerical aperture\n", "\n", "# Calculations\n", "n1=n_a/(math.sqrt(2*dl)) # core refractive index\n", "n2=n1-(dl*n1)# cladding refractive index\n", "\n", "# Results\n", "print ('%s %.2f' %(\" core refractive index = \",n1))\n", "print ('%s %.2f' %(\"\\n cladding refractive index = \",n2))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " core refractive index = 1.42\n", "\n", " cladding refractive index = 1.40\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7:PgNo-37" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable declaration\n", "n2=1.59 # cladding refractive index\n", "n_a=0.2 # numerical aperture\n", "n_1=1.60 # core refractive index\n", "n_o=1.33\n", "\n", "# Calculations\n", "n1=math.sqrt(math.pow(n2,2)+math.pow(n_a,2)) # core refractive index\n", "A=(math.sqrt(math.pow(n_1,2)-math.pow(n2,2)))/n_o\n", "x_a=(math.asin(A))*180/math.pi # acceptance angle in degree\n", "x_c=(math.asin(n2/n1))*180/math.pi #critical angle in degree\n", "y=1300*math.pow(10,(-9)) # in meter\n", "a=25*math.pow(10,(-6)) # in meter\n", "v=(2*math.pi*a*n_a)/y\n", "V=math.floor(v)\n", "M=math.pow(V,2)/2 # number of modes transmitted\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" acceptance angle in degree = \",x_a,\"degree\"))\n", "print ('%s %.2f %s' %(\"\\n critical angle in degree = \",x_c,\"degree\"))\n", "print ('%s %d' %(\"\\n number of modes transmitted = \",M))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " acceptance angle in degree = 7.72 degree\n", "\n", " critical angle in degree = 82.83 degree\n", "\n", " number of modes transmitted = 288\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8:PgNo-42" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable declaration\n", "n1=1.50 # core refractive index\n", "n2=1.47 # cladding refractive index\n", "\n", "# Calculations\n", "dl=(n1-n2)/n1\n", "n_a=n1*(math.sqrt(2*dl)) # numerical aperture\n", "x_e=(math.asin(n_a))*180/math.pi # the maximum entrance angle in degree\n", "\n", "# Results\n", "print ('%s %.1f' %(\" Numerical aperture = \",n_a))\n", "print ('%s %.2f %s' %(\"\\n The maximum entrance angle in degree = \",x_e,\"degree\"))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Numerical aperture = 0.3\n", "\n", " The maximum entrance angle in degree = 17.46 degree\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9:PgNo-47" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable declaration\n", "n1=1.44 # core refractive index\n", "dl=0.02\n", "\n", "# Calculations\n", "n_a=n1*math.sqrt(2*dl)\n", "n_a=n1*(math.sqrt(2*dl)) # numerical aperture\n", "x_a=(math.asin(n_a))*180/math.pi # acceptance angle in degree\n", "\n", "# Results\n", "print \" Numerical aperture = \",n_a\n", "print ('%s %.2f %s'%(\"\\n acceptance angle in degree = \",x_a,\"degree\"))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Numerical aperture = 0.288\n", "\n", " acceptance angle in degree = 16.74 degree\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10:PgNo-53" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable declaration\n", "n1=1.50 # core refractive index\n", "n2=(99.0/100.0)*1.50 # cladding refractive index\n", "\n", "# Calculations\n", "x_c=math.asin(n2/n1)*(180/math.pi) # critical angle in degree\n", "n_m=math.sqrt(math.pow(n1,2)-math.pow(n2,2)) # numerical aperture\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" critical angle = \",x_c,\"degree\"))\n", "print ('%s %.2f' %(\"\\n numerical aperture = \",n_m))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " critical angle = 81.89 degree\n", "\n", " numerical aperture = 0.21\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11: PgNo-58" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable declaration\n", "n1=1.50 # core refractive index\n", "n2=1.45 # cladding refractive index\n", "\n", "# Calculations\n", "n_m=math.sqrt(math.pow(n1,2)-math.pow(n2,2)) # numerical aperture\n", "dl=(n1-n2)/n1 # fractional difference\n", "\n", "# Results\n", "print ('%s %.2f' %(\" numerical aperture = \",n_m))\n", "print ('%s %.2f' %(\"\\n fractional difference = \",dl))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " numerical aperture = 0.38\n", "\n", " fractional difference = 0.03\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12: PgNo-65" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable declaration\n", "n1=1.46 # core refractive index\n", "n2=1.45 # cladding refractive index\n", "\n", "# Calculations\n", "x_c=(math.asin(n2/n1))*180/math.pi # critical angle in degree\n", "n_m=math.sqrt(math.pow(n1,2)-math.pow(n2,2)) # numerical aperture\n", "x_a=(math.asin(n_m))*180/math.pi # acceptance angle in degree\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" critical angle = \",x_c,\"degree\"))\n", "print ('%s %.2f %s' %(\"\\n acceptance angle = \",x_a,\"degree\"))\n", "print ('%s %.2f' %(\"\\n numerical aperture = \",n_m))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " critical angle = 83.29 degree\n", "\n", " acceptance angle = 9.82 degree\n", "\n", " numerical aperture = 0.17\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13: PgNo-67" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "# Variable declaration\n", "n_m=0.204 #numerical aperture\n", "dl=0.01 # index difference\n", "\n", "# Calculations\n", "n1=n_m/(math.sqrt(2*dl)) # core refractive index\n", "n2=n1*(1-dl) # cladding refractive index\n", "\n", "# Results\n", "print ('%s %.2f' %(\" core refractive index = \",n1))\n", "print ('%s %.2f' %(\"\\n cladding refractive index = \",n2))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " core refractive index = 1.44\n", "\n", " cladding refractive index = 1.43\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14: PgNo-71" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "# Variable declaration\n", "\n", "n1=1.46 #core refractive index\n", "dl=0.01 # index difference\n", "\n", "# Calculations\n", "n_2=n1-(n1*dl) # cladding refractive index\n", "x_c=(math.asin(n_2/n1))*180/math.pi #critical angle in degree\n", "n_m=math.sqrt(math.pow(n1,2)-math.pow(n_2,2)) # numerical aperture\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" critical angle = \",x_c,\"degree\"))\n", "print ('%s %.2f' %(\"\\n numerical aperture = \",n_m))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " critical angle = 81.89 degree\n", "\n", " numerical aperture = 0.21\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15: PgNo-76" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "# Variable declaration\n", "n1=1.50 # core refractive index\n", "n2=1.45 # cladding refractive index\n", "\n", "# Calculations\n", "x_c=(math.asin(n2/n1))*180/math.pi # critical angle in degree\n", "n_m=math.sqrt(math.pow(n1,2)-math.pow(n2,2)) # numerical aperture\n", "x_a=(math.asin(n_m))*180/math.pi # acceptance angle in degree\n", "n_c=math.pow((n_m),2)*100 # percentage of light\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" critical angle= \",x_c,\"degree\"))\n", "print ('%s %.2f %s' %(\"\\n acceptance angle= \",x_a,\"degree\"))\n", "print ('%s %.2f' %(\"\\n numerical aperture= \",n_m))\n", "print ('%s %.2f %s'%(\"\\n percentage of light= \",n_c,\"%\"))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " critical angle= 75.16 degree\n", "\n", " acceptance angle= 22.59 degree\n", "\n", " numerical aperture= 0.38\n", "\n", " percentage of light= 14.75 %\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16: PgNo-81" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable declaration\n", "n1=1.50 # core refractive index\n", "dl=0.01 # index difference\n", "\n", "# Calculations\n", "n_m=n1*(math.sqrt(2*dl)) # numerical aperture\n", "x_a=math.pi*math.pow((n_m),2) # acceptance angle in radian\n", "n2_1=(1-dl) # the ratio of n2 to n1\n", "x_c=(math.asin(n2_1))*180/math.pi # critical angle in degree\n", "\n", "# Results\n", "print ('%s %.2f'%(\" numerical aperture= \",n_m))\n", "print ('%s %.2f %s' %(\"\\n acceptance angle= \",x_a,\"radian\"))\n", "print ('%s %.2f %s'%(\"\\n critical angle= \",x_c,\"degree\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " numerical aperture= 0.21\n", "\n", " acceptance angle= 0.14 radian\n", "\n", " critical angle= 81.89 degree\n" ] } ], "prompt_number": 18 } ], "metadata": {} } ] }