{ "metadata": { "name": "", "signature": "sha256:915bbc296599c9cae8476366ab28673955be075640a27c082930b79dfed61501" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 7: Optical Detectors" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1: PgNo-284" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Initialisation of variables\n", "n1=1.46 # core refractive index\n", "n=1 # refractive index due to air\n", "r=math.pow(((n1-n)/(n1+n)),2)\n", "r1=0.03 # r take upto two decimal place\n", "l_s=-10*math.log(1-r1)/math.log(10) # fiber loss in db\n", "l_t=2*l_s # total loss in db\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" The fiber loss = \",l_s,\"db\"))\n", "print (\"\\n there is a similar loss at the other interface \")\n", "print ('%s %.2f %s' %(\"\\n The total fiber loss = \",l_t,\"db\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The fiber loss = 0.13 db\n", "\n", " there is a similar loss at the other interface \n", "\n", " The total fiber loss = 0.26 db\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2: PgNo-285" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable declaration\n", "n1=1.46 # core refractive index\n", "n=1 # refractive index due to air\n", "a=25*math.pow(10,-6) # core radius in m\n", "y=3*math.pow(10,-6) # in m\n", "\n", "# calculations\n", "A=(y/a)*math.pow((1-math.pow((y/(2*a)),2)),0.5)\n", "B=math.acos(y/(2*a))\n", "C=n1/n\n", "M=(16*math.pow(C,2))/(math.pi*math.pow((1+C),4))\n", "n_lat=M*(2*B-A) # coupling efficiency for multimode step index fiber\n", "L_lat=-10*math.log(n_lat)/math.log(10) # insertion loss for lateral misalignment\n", "n_lat1=(1/math.pi)*(2*B-A) # coupling efficiency when there is no air gap\n", "L_lat1=-10*math.log(n_lat1)/math.log(10) # insertion loss for lateral misalignment when there is no air gap\n", "\n", "# Results\n", "print ('%s %.2f ' %(\" The coupling efficiency for multimode step index fiber = \", n_lat))\n", "print ('%s %.2f %s' %(\"\\n The insertion loss for lateral misalignment = \",L_lat,\"dB\"))\n", "print ('%s %.2f ' %(\"\\n The coupling efficiency when there is no air gap = \", n_lat1))\n", "print ('%s %.2f %s' %(\"\\n The insertion loss for lateral misalignment when there is no air gap = \",L_lat1,\"dB\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The coupling efficiency for multimode step index fiber = 0.86 \n", "\n", " The insertion loss for lateral misalignment = 0.65 dB\n", "\n", " The coupling efficiency when there is no air gap = 0.92 \n", "\n", " The insertion loss for lateral misalignment when there is no air gap = 0.34 dB\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3: PgNo-287" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable declaration\n", "n1=1.50 # core refractive index\n", "n=1 # refractive index due to air\n", "a=25*math.pow(10,-6) # core radius in m\n", "y=4*math.pow(10,-6) # in m\n", "\n", "# calculations\n", "A=(y/a)*math.pow((1-math.pow((y/(2*a)),2)),0.5)\n", "B=math.acos(y/(2*a))\n", "C=n1/n\n", "M=(16*math.pow(C,2))/(math.pi*math.pow((1+C),4))\n", "n_lat=M*(2*B-A) # coupling efficiency for multimode step index fiber\n", "L_lat=-10*math.log(n_lat)/math.log(10) # insertion loss for lateral misalignment\n", "dx=4*(math.pi/180) # angular misalignment in radian\n", "dl=0.02 #relative index difference\n", "NA=n1*math.sqrt(2*dl) # numerical aperture\n", "n_ang=1-(0.069/(math.pi*NA)) # coupling efficiency due to angular misalignment\n", "L_ang=-10*math.log(n_ang)/math.log(10) # loss due to angular misalignment\n", "Lt=L_lat+L_ang # total insertion loss in dB\n", "\n", "# Results\n", "print ('%s %.2f %s' %( \" The total insertion loss = \",Lt,\"dB\"))\n", "print (\"\\n the answer is wrong in the textbook \")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The total insertion loss = 1.15 dB\n", "\n", " the answer is wrong in the textbook \n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4: PgNo-292" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# variable initialisation\n", "n1=1.46 # core refractive index\n", "n=1 #refractive index due to air\n", "a=1 # core radius in m\n", "y=0.12 #lateral offset \n", "\n", "# Calculations\n", "A=(y/a)*math.pow((1-math.pow((y/(2*a)),2)),0.5)\n", "B=math.acos(y/(2*a))\n", "C=n1/n\n", "M=(16*math.pow(C,2))/(math.pi*math.pow((1+C),4))\n", "n_lat=M*(2*B-A) #coupling efficiency when there is a smsll air gap\n", "L_lat=-10*math.log(n_lat)/math.log(10) # insertion loss when there is a smsll air gap\n", "n_lat1=(1/math.pi)*(2*B-A) # coupling efficiency when the joint is indexed matched\n", "L_lat1=-10*math.log(n_lat1)/math.log(10) # insertion loss when the joint is indexed matched\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" The insertion loss when there is a smsll air gap = \",L_lat,\"dB\"))\n", "print ('%s %.2f %s' %( \"\\n The insertion loss when the joint is indexed matched = \",L_lat1,\"dB\"))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The insertion loss when there is a smsll air gap = 0.65 dB\n", "\n", " The insertion loss when the joint is indexed matched = 0.34 dB\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5: PgNo-296" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# variable initialisation\n", "d1=60*math.pow(10,-6)# core diameter of fiber 1 in m\n", "d2=50*math.pow(10,-6) # core diameter of fiber 1 in m\n", "NA1=0.25 # numerical aerture of fiber 1\n", "NA2=0.22 # numerical aerture of fiber 2\n", "a1=2.0 # for fiber 1\n", "a2=1.9 # for fiber 2\n", "\n", "# calculations\n", "n_cd=math.pow((d2/d1),2)\n", "n_NA=math.pow((NA2/NA1),2);\n", "n_a=(1+(2/a1))/(1+(2/a2))\n", "n_t=n_cd*n_NA*n_a # total coupling efficiency\n", "Lt=-10*math.log(n_t)/math.log(10) #total loss at the joint in dB\n", "\n", "# Results\n", "print ('%s %.3f ' %(\" The total coupling efficiency in the frw direction = \", n_t))\n", "print ('%s %.2f %s' %(\"\\n The total loss at the joint in the frw direction = \",Lt,\"dB\"))\n", "print (\"\\n In the backward direction n_cd & n_a are all unity therefore there will be no loss in the backward direction of transmission of the signal \")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The total coupling efficiency in the frw direction = 0.524 \n", "\n", " The total loss at the joint in the frw direction = 2.81 dB\n", "\n", " In the backward direction n_cd & n_a are all unity therefore there will be no loss in the backward direction of transmission of the signal \n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6: PgNo-298" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# variable initialisation\n", "d1=80*math.pow(10,-6) #core diameter of fiber 1 in m\n", "d2=60*math.pow(10,-6) #core diameter of fiber 1 in m\n", "NA1=0.25 # numerical aerture of fiber 1\n", "NA2=0.20 # numerical aerture of fiber 2\n", "a1=1.9 # for fiber 1\n", "a2=2.1 # for fiber 2\n", "\n", "# Calculations\n", "n_cd=math.pow((d2/d1),2)\n", "n_NA=math.pow((NA2/NA1),2)\n", "n_a=(1+(2/a1))/(1+(2/a2))\n", "n_t=n_cd*n_NA*n_a # total coupling efficiency in the frw direction\n", "Lt=-10*math.log(n_t)/math.log(10) # total loss at the joint in the frw direction in dB\n", "n_cd1=1\n", "n_NA1=1\n", "n_a1=(1+(2/a2))/(1+(2/a1))\n", "n_t1=n_cd1*n_NA1*n_a1 # total coupling efficiency in the backward direction\n", "Lt1=-10*math.log(n_t1)/math.log(10)# total loss at the joint in the backward direction in dB\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" The total loss at the joint in the frw direction = \",Lt,\"dB\"))\n", "print ('%s %.2f %s' %(\"\\n The total loss at the joint in the backward direction = \",Lt1,\"dB\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The total loss at the joint in the frw direction = 4.22 dB\n", "\n", " The total loss at the joint in the backward direction = 0.22 dB\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7: PgNo-303" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# variable initialisation\n", "n1=1.5 # core refractive index\n", "n=1.47 # refractive index due to air\n", "a=1 # core radius in m\n", "y=0.12 # lateral offset\n", "\n", "# calculations\n", "A=(y/a)*math.pow((1-math.pow((y/(2*a)),2)),0.5)\n", "B=math.acos(y/(2*a))\n", "C=n1/n\n", "M=(16*math.pow(C,2))/(math.pi*math.pow((1+C),4))\n", "n_lat=M*(2*B-A) #coupling efficiency of the splice\n", "L_lat=-10*math.log(n_lat)/math.log(10) #insertion loss of the splice\n", "\n", "# Results\n", "print ('%s %.2f %s' %( \" The insertion loss of the splice = \",L_lat,\"dB\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The insertion loss of the splice = 0.35 dB\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8: PgNo-305" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable initialisation\n", "L_f=0.036\n", "n_f=math.pow(10,(-0.036))\n", "# here we get a quadratic equation in n1 and on solving we get\n", "n1=(2.17+math.sqrt(math.pow((-2.17),2)-4*1*1))/2 # refractive index of the fiber core\n", "# Results\n", "print ('%s %.3f' %(\" The refractive index of the fiber core = \", n1))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The refractive index of the fiber core = 1.506\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9: PgNo-309" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# variable declaration\n", "n1=1.46 #core refractive index\n", "n=4 # refractive index due to air\n", "x=math.pi/180\n", "A=(16*math.pow(n1,2))/(math.pow((1+n1),4))\n", "B=n*x\n", "n_ang=math.pow(10,(-0.06)) # angular coupling efficiency\n", "NA=B/((math.pi)*(1-(n_ang/A))) # numerical aperture\n", "\n", "# Results\n", "print ('%s %.2f' %(\" The numerical aperture = \", NA))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The numerical aperture = 0.34\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10: PgNo-311" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable declaration\n", "y=5*math.pow(10,-6) # lateral misalignment in m\n", "a=25*math.pow(10,-6) # core diameter in m\n", "Lt=0.85*(y/a) # misalignment loss\n", "n_c=1-Lt # coupling efficiency\n", "L_i=-10*math.log(n_c)/math.log(10) # insertion loss in dB\n", "Lt1=0.75*(y/a) # misalignment loss if we have both guided and leaky modes\n", "n_c1=1-Lt1 # coupling efficiency\n", "L_i1=-10*math.log(n_c1)/math.log(10) # insertion loss in dB if we have both guided and leaky modes\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" The insertion loss = \",L_i,\"dB\"))\n", "print ('%s %.2f %s' %(\"\\n The insertion loss,if we have both guided and leaky modes = \",L_i1,\"dB\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The insertion loss = 0.81 dB\n", "\n", " The insertion loss,if we have both guided and leaky modes = 0.71 dB\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11: PgNo-314" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable declaration\n", "n1=1.5 # core refractive index\n", "n=1 # refractive index due to air\n", "x=5*math.pi/180\n", "\n", "# Calculations\n", "C=n1/n\n", "A=(16*math.pow(C,2))/(math.pow((1+C),4))\n", "B=n*x\n", "NA=0.22 # numerical aperture\n", "n_ang=A*(1-(B/(math.pi*NA))) # angular coupling efficiency\n", "L_ang=-10*math.log(n_ang)/math.log(10) # inserion loss when NA=0.22\n", "NA1=0.32 # numerical aperture\n", "n_ang1=A*(1-(B/(math.pi*NA1))) # angular coupling efficiency\n", "L_ang1=-10*math.log(n_ang1)/math.log(10) # inserion loss when NA=0.32\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" The inserion loss when NA=0.22 = \",L_ang,\"dB\"))\n", "print ('%s %.2f %s' %(\"\\n The inserion loss when NA=0.32 = \",L_ang1,\"dB\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The inserion loss when NA=0.22 = 0.94 dB\n", "\n", " The inserion loss when NA=0.32 = 0.75 dB\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12: PgNo-315" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable declaration\n", "V=2.50 # normalised frequency\n", "n1=1.5 # core refractive index\n", "a=4.5*math.pow(10,-6) # core radius in m\n", "NA=0.2 # numerical aperture\n", "y=3*math.pow(10,-6) # lateral misalignment in m\n", "w=a*((0.65+1.62*math.pow((V),-1.5)+2.88*math.pow((V),-6))/math.pow(2,0.5)) # normalised spot size in m\n", "T1=2.17*math.pow((y/w),2) # Loss due to lateral offset in dB\n", "x=(math.pi/180)*w\n", "Ta=2.17*math.pow(((x*n1*V)/(a*NA)),2) # loss due to angular misalignment in dB\n", "T=T1+Ta # total insertion loss in dB\n", "\n", "# Results\n", "print ('%s %.3f %s' %(\" The total insertion loss = \",T,\"dB\"))\n", "print (\"\\n The answer is wrong in the textbook \")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The total insertion loss = 1.813 dB\n", "\n", " The answer is wrong in the textbook \n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13: PgNo-317" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# variable declaration\n", "P1=65 # optical power in uW\n", "P2=0.005 #output power at port 2 in uW\n", "P3=24 # output power at port 3 in uW\n", "P4=26.5 #output power at port 4 in uW\n", "\n", "# Calculations\n", "Le=10*math.log(P1/(P3+P4))/math.log(10) # Excess loss in dB\n", "Le1=10*math.log(P1/P3)/math.log(10) # insertion loss port 1 to 3 in dB\n", "Le2=10*math.log(P1/P4)/math.log(10) # insertion loss port 1 to 4 in dB\n", "ct=10*math.log(P2/P1)/math.log(10) # cross talk in dB\n", "sr=(P3/(P3+P4))*100 # split ratio\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" The Excess loss = \",Le,\"dB\"))\n", "print ('%s %.2f %s' %(\"\\n The insertion loss port 1 to 3 = \",Le1,\"dB\"))\n", "print ('%s %.2f %s' %(\"\\n The insertion loss port 1 to 4 = \",Le2,\"dB\"))\n", "print ('%s %.2f %s' %(\"\\n The cross talk = \",ct,\"dB\"))\n", "print ('%s %.2f %s' %(\"\\n The split ratio = \",sr,\"%\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The Excess loss = 1.10 dB\n", "\n", " The insertion loss port 1 to 3 = 3.01 dB\n", "\n", " The insertion loss port 1 to 4 = 3.90 dB\n", "\n", " The cross talk = -41.14 dB\n", "\n", " The split ratio = 47.52 %\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14: PgNo-318" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# variable initialisation\n", "n=1.0\n", "n1=1.48\n", "r=math.pow(((n1-n)/(n1+n)),2) # fresnel's reflection\n", "Ls=-10*math.log(1-r)/math.log(10) #optical loss in dB\n", "Lt=2*Ls # total fresnel loss\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" The total fresnel loss = \",Lt,\"dB\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The total fresnel loss = 0.33 dB\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15: PgNo-322" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "NA1=0.32 # numerical aperture for fiber1\n", "NA2=0.22 # numerical aperture for fiber2\n", "Lc=20*math.log(NA1/NA2)/math.log(10) #NA mismatch coupling loss\n", "\n", "#Results\n", "print ('%s %.2f %s' %(\" The NA mismatch coupling loss = \",Lc,\"dB\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The NA mismatch coupling loss = 3.25 dB\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16: PgNo-325" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# variable initialisation\n", "P0=250.0 # optical power in uW\n", "P1=80.0 # output power at port 1 in uW\n", "P2=70.0 # output power at port 2 in uW\n", "P3=5*math.pow(10,-3) # output power at port 3 in uW\n", "\n", "# calculations\n", "cr=(P2/(P1+P2))*100 # coupling ratio\n", "Le=10*math.log(P0/(P1+P2))/math.log(10) # Excess loss in dB\n", "Le1=10*math.log(P0/P1)/math.log(10) # insertion loss port 0 to 1 in dB\n", "Le2=10*math.log(P0/P2)/math.log(10) # insertion loss port 0 to 2 in dB\n", "ct=10*math.log(P3/P0)/math.log(10) #cross talk in dB\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" The coupling ratio = \",cr,\"%\"))\n", "print ('%s %.2f %s' %(\"\\n The Excess loss = \",Le,\"dB\"))\n", "print ('%s %.2f %s' %(\"\\n The insertion loss port 0 to 1 = \",Le1,\"dB\"))\n", "print ('%s %.2f %s' %(\"\\n The insertion loss port 0 to 2 = \",Le2,\"dB\"))\n", "print ('%s %.2f %s' %(\"\\n The cross talk = \",ct,\"dB\"))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The coupling ratio = 46.67 %\n", "\n", " The Excess loss = 2.22 dB\n", "\n", " The insertion loss port 0 to 1 = 4.95 dB\n", "\n", " The insertion loss port 0 to 2 = 5.53 dB\n", "\n", " The cross talk = -46.99 dB\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 17: PgNo-327" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable declaration\n", "P_21=4.0/5.0 # ratio of the input available at port2\n", "P_31=1.0/5.0 # ratio of the input available at port3 \n", "Lt=-10*math.log(P_21)/math.log(10) # throughput loss\n", "Lp=-10*math.log(P_31)/math.log(10) # tap loss\n", "Le=-10*math.log(P_21+P_31)/math.log(10) # excess loss\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" The throughput loss = \",Lt,\"dB\"))\n", "print ('%s %.2f %s' %(\"\\n The tap loss = \",Lp,\"dB\"))\n", "print (\"\\n Directionality=-10*log(0/Pi=infinity)\")\n", "print ('%s %.1f %s' %(\"\\n The excess loss = \",Le,\"dB\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The throughput loss = 0.97 dB\n", "\n", " The tap loss = 6.99 dB\n", "\n", " Directionality=-10*log(0/Pi=infinity)\n", "\n", " The excess loss = -0.0 dB\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18: PgNo-329" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable declaration\n", "Le=4 # excess loss in dB\n", "D=60 # Directionality in dB\n", "P_41=math.pow(10,-6) # the ratio of P4 to P1\n", "P_31=0.670/5 # the ratio of P3 to P1\n", "P_21=P_31*4 # the ratio of P2 to P1\n", "Lt=-10*math.log(P_21)/math.log(10) # throughput loss\n", "Lp=-10*math.log(P_31)/math.log(10) # tap loss\n", "Ls=-10*math.log(0.670)/math.log(10) # loss due to radiation scattering in dB\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" The fraction of the input power goes to each of the ports = \",P_21,\"dB\"))\n", "print ('%s %.2f %s' %(\"\\n The throughput loss = \",Lt,\"dB\"))\n", "print ('%s %.2f %s' %(\"\\n The tap loss = \",Lp,\"dB\"))\n", "print ('%s %.2f %s' %(\"\\n The loss due to radiation scattering = \",Ls,\"dB\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The fraction of the input power goes to each of the ports = 0.54 dB\n", "\n", " The throughput loss = 2.71 dB\n", "\n", " The tap loss = 8.73 dB\n", "\n", " The loss due to radiation scattering = 1.74 dB\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19: PgNo-330" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable declaration\n", "L1=1.5 # length in km\n", "L2=2/1000 # length in km\n", "Pi=50.1*math.pow(10,-6) # optical power in W\n", "Po=385.4*math.pow(10,-6) # output power in W\n", "a=(10/(L1-L2))*math.log(Po/Pi)/math.log(10) # attenuation per km\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" The attenuation per km = \",a,\"dB/km\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The attenuation per km = 5.91 dB/km\n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 20: PgNo-334" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variable initialisation\n", "Psc=5.31*math.pow(10,-9)\n", "Popt=98.45*math.pow(10,-6) \n", "L=5.99 # length in km\n", "asc=(4.343*math.pow(10,5)/L)*(Psc/Popt) # scattering loss in the fiber in dB\n", "\n", "# Results\n", "print ('%s %.2f %s' %(\" The scattering loss in the fiber = \",asc,\"dB/km\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The scattering loss in the fiber = 3.91 dB/km\n" ] } ], "prompt_number": 26 } ], "metadata": {} } ] }