{ "metadata": { "name": "", "signature": "sha256:afd6588cf456d4d425f74443bb32014c9097e23d883f51c38473cadd2c6f5ba9" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 2: Optical Fibers" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.1, Page number 49" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Determine maximum thickness of film'''\n", "\n", "import math\n", "\n", "#Variable declaration\n", "n1 = 3.5 #core refractive index\n", "n2 = 3.0 #cladding refractive index\n", "v = 6 #no. of modes\n", "lamda = 1.5 #propagating wavelength(um)\n", "\n", "#Calculations\n", "theta_c = math.degrees(math.asin(n2/n1))\n", "h = (2*math.pi*v*lamda)/(2*math.pi*n1*math.cos(math.radians(theta_c)))\n", "\n", "#Result\n", "print \"The thickness of the film should be less than\",round(h),\"um\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The thickness of the film should be less than 5.0 um\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2, Page number 50" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''find the angle of acceptance and crtitical angle'''\n", "\n", "import math\n", "\n", "#Variable declaration\n", "n1 = 1.53 #core refractive index\n", "n2 = 1.48 #cladding refractive index\n", "n0 = 1 #refractive index for air\n", "\n", "#calculations\n", "theta_a = math.degrees(math.asin(((n1**2-n2**2)**0.5)/n0)) \n", "\n", "theta_c = math.degrees(math.asin(n2/n1))\n", "\n", "#Result\n", "print \"Angle of acceptance =\",round(theta_a,2),\"degrees\"\n", "print \"Critical angle =\",round(theta_c,2),\"degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Angle of acceptance = 22.83 degrees\n", "Critical angle = 75.31 degrees\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3, Page number 50" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Determine the numerical aperture'''\n", "\n", "import math\n", "\n", "#Variable declaration\n", "v = 26.6 #frequency(Hz)\n", "lamda = 1.3 #propagating wavelength(um)\n", "a = 25 #core radius(um)\n", "\n", "#Calculation\n", "NA = (v*lamda)/(2*math.pi*a)\n", "\n", "#Result\n", "print \"Numerical aperture =\",round(NA,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Numerical aperture = 0.22\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.4, Page number 51" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Determine the numerical aperture'''\n", "\n", "import math\n", "\n", "#Variable declaration\n", "n1 = 1.4675 #core refractive index\n", "n2 = 1.4622 #cladding refractive index\n", "\n", "#Calculation\n", "NA = math.sqrt(n1**2-n2**2)\n", "\n", "#Result\n", "print \"Numerical aperture =\",round(NA,3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Numerical aperture = 0.125\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.5, Page number 51" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Determine cut-off wavelength for step index fiber'''\n", "\n", "import math\n", "\n", "#Variable declaration\n", "n1 = 1.5 #core refractive index\n", "n2 = 1.47 #cladding refractive index\n", "a = 4 #core radius(um)\n", "\n", "#Calculation\n", "lamda_c = (2*math.pi*a*((n1**2-n2**2)**0.5))/2.405\n", "\n", "#Result\n", "print \"The cut-off wavelength is\",round(lamda_c,2),\"um\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The cut-off wavelength is 3.12 um\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.6, Page number 51" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Determine maximum diameter of the core for single mode fiber'''\n", "\n", "import math\n", "\n", "#Variable declaration\n", "n1 = 1.55 #core refractive index\n", "n2 = 1.48 #cladding refractive index\n", "lamda = 1.55 #wavelength(um)\n", "\n", "#Calculations\n", "a = (2.405*lamda)/(2*math.pi*(n1**2-n2**2)**0.5)\n", "d = 2*a #diameter\n", "\n", "#Result\n", "print \"Maximum diameter of the core is\",round(d,2),\"um\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum diameter of the core is 2.58 um\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7, Page number 52" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Determine the number of modes propagating'''\n", "\n", "import math\n", "\n", "#Variable declaration\n", "n1 = 1.48 #core refractive index\n", "n2 = 0.01 #cladding refractive index\n", "a = 25 #core radius(um)\n", "lamda = 0.84 #Wavelength(um)\n", "\n", "#Calculation\n", "m = 2*(2*math.pi/lamda)**2*(a**2/2)*(n1**2-n2**2)\n", "v = math.sqrt(2*m)\n", "\n", "#Result\n", "print \"Number of modes =\",v, \"(Calculation mistake in textbook while calculating 'm'. Hence, the answer differs)\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Number of modes = 391.074660134 (Calculation mistake in textbook while calculating 'm'. Hence, the answer differs)\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.8, Page number 52" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Determine the number of modes for multimode fiber and calculate the same when lamda is changed to 1.3um'''\n", "\n", "import math\n", "\n", "#Variable declaration\n", "n1 = 1.475 #core refractive index\n", "n2 = 1.472 #cladding refractive index\n", "a = 20 #core radius(um)\n", "lamda = 0.85 #Wavelength(um)\n", "\n", "#Calculation\n", "v = (2*math.pi*a*math.sqrt((n1**2-n2**2)))/lamda\n", "M1 = v**2/2\n", "\n", "lamda2 = 1.3 #um\n", "v2 = (2*math.pi*a*math.sqrt((n1**2-n2**2)))/lamda2\n", "M2 = v2**2/2\n", "\n", "#Results\n", "print \"Number of modes when lamda is changed =\",round(M1) #v is calculated wrongly in the book and answer for case a M not given\n", "print \"Number of modes when lamda is changed =\",round(M2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Number of modes when lamda is changed = 97.0\n", "Number of modes when lamda is changed = 41.0\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.9, Page number 53" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Determine the numerical aperture'''\n", "\n", "import math\n", "\n", "#Variable declaration\n", "n1 = 1.5 #core refractive index\n", "n2 = 1.48 #cladding refractive index\n", "\n", "#Calculation\n", "NA = math.sqrt(n1**2-n2**2)\n", "\n", "#Result\n", "print \"Numerical aperture =\",round(NA,5)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Numerical aperture = 0.24413\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.10, Page number 53" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Determine core radius, NA and maximum acceptance angle'''\n", "\n", "import math\n", "\n", "#Variable declaration\n", "n1 = 1.450 #core refractive index\n", "n2 = 1.447 #cladding refractive index\n", "lamda = 1.3 #Wavelength(um)\n", "\n", "#Calculation\n", "v = 2.405\n", "a = (v*lamda)/(2*math.pi*math.sqrt((n1**2-n2**2)))\n", "\n", "NA = math.sqrt(n1**2-n2**2)\n", "\n", "theta_max = math.degrees(math.asin(NA))\n", "\n", "#Results\n", "print \"Core radius =\",round(a,3),\"um\"\n", "print \"Numerical aperture =\",round(NA,4)\n", "print \"Maximum acceptance angle =\",round(theta_max,3),\"degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Core radius = 5.338 um\n", "Numerical aperture = 0.0932\n", "Maximum acceptance angle = 5.349 degrees\n" ] } ], "prompt_number": 37 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.11, Page number 53" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Determine critical angle at core cladding interface, NA and acceptance angle'''\n", "\n", "import math\n", "\n", "#Variable declaration\n", "n1 = 1.50 #core refractive index\n", "n2 = 1.47 #cladding refractive index\n", "\n", "#calculations\n", "theta_c = math.degrees(math.asin(n2/n1))\n", "\n", "NA = math.sqrt(n1**2-n2**2)\n", "\n", "theta_a = math.degrees(math.asin(NA))\n", "\n", "#Result\n", "print \"Critical angle at core cladding interface =\",round(theta_c,1),\"degrees\"\n", "print \"Numerical aperture =\",round(NA,2)\n", "print \"Maximum acceptance angle =\",round(theta_a,1),\"degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Critical angle at core cladding interface = 78.5 degrees\n", "Numerical aperture = 0.3\n", "Maximum acceptance angle = 17.4 degrees\n" ] } ], "prompt_number": 38 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.12, Page number 55" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Determine the acceptance angle for skew rays'''\n", "\n", "#Variable declaration\n", "NA = 0.4 #numerical aperture\n", "#Since skew rays change direction by 100 degrees at each reflection,\n", "r = 50 #degrees\n", "\n", "#Calculations\n", "theta_as = math.degrees(math.asin(NA/math.cos(math.radians(r))))\n", "\n", "#print\n", "print \"Acceptance angle =\",round(theta_as,1),\"degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Acceptance angle = 38.5 degrees\n" ] } ], "prompt_number": 39 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.13, Page number 55" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Determine normalized frequency and number of guided modes'''\n", "\n", "import math\n", "\n", "#Variable declaration\n", "n1 = 1.48 #core refractive index\n", "lamda = 0.85 #wavelength(um)\n", "a = 80/2 #core radius(um)\n", "delta = 1.5/100 #relative index difference\n", "\n", "#Calculations\n", "v = (2*math.pi*a*n1*(2*delta)**0.5)/lamda\n", "\n", "M = v**2/2\n", "\n", "#Results\n", "print \"Normalized frequency =\",round(v,1),\"Hz\"\n", "print \"Number of guided modes =\",round(M)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Normalized frequency = 75.8 Hz\n", "Number of guided modes = 2872.0\n" ] } ], "prompt_number": 40 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.14, Page number 56" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Determine cut off value for normalized frequency and maximum core radius'''\n", "\n", "import math\n", "\n", "#Variable declaration\n", "n1 = 1.5 #core refractive index\n", "lamda = 1.3 #wavelength(um)\n", "delta = 1./100. #relative index difference\n", "alpha = 2\n", "\n", "#Calculations\n", "v = 2.4*(1+2/alpha)**0.5\n", "\n", "a = (v*lamda)/(2*math.pi*n1*(2*delta)**0.5)\n", "\n", "#Results\n", "print \"Cut off value for normalized frequency =\",round(v,2)\n", "print \"Maximum core radius =\",round(a,2),\"um\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Cut off value for normalized frequency = 3.39\n", "Maximum core radius = 3.31 um\n" ] } ], "prompt_number": 42 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.15, Page number 56" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Determine cut-off wavelength for step index fiber'''\n", "\n", "import math\n", "\n", "#Variable declaration\n", "n1 = 1.46 #core refractive index\n", "a = 4.5 #core radius(um)\n", "delta = 0.25/100\n", "\n", "#Calculation\n", "lamda_c = (2*math.pi*a*n1*(2*delta)**0.5)/2.405\n", "\n", "#Result\n", "print \"The cut-off wavelength is\",round(lamda_c,3),\"um\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The cut-off wavelength is 1.214 um\n" ] } ], "prompt_number": 43 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.16, Page number 57" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Determine the numerical aperture and acceptance angle'''\n", "\n", "import math\n", "\n", "#Variable declaration\n", "n1 = 1.45 #core refractive index\n", "n2 = 1.4 #cladding refractive index\n", "\n", "#Calculation\n", "NA = math.sqrt(n1**2-n2**2)\n", "\n", "theta_m = math.degrees(math.asin(NA))\n", "\n", "#Result\n", "print \"Numerical aperture =\",round(NA,4)\n", "print \"Acceptance angle =\",round(theta_m,2),\"degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Numerical aperture = 0.3775\n", "Acceptance angle = 22.18 degrees\n" ] } ], "prompt_number": 44 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.17, Page number 57" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Calculate cladding index, crtical internal reflection angle, external critical acceptance angle and numerical aperture'''\n", "\n", "import math\n", "\n", "#Variable declaration\n", "n1 = 1.5 #core refractive index\n", "delta = 0.0005\n", "\n", "#Calculations\n", "n2 = n1*(1-delta)\n", "\n", "theta_c = math.degrees(math.asin(n2/n1))\n", "\n", "n0 = 1 #refractive index for air\n", "theta_m = math.degrees(math.asin(((n1**2-n2**2)**0.5)/n0))\n", "\n", "NA = n1*math.sqrt(2*delta)\n", "\n", "#Results\n", "print \"Cladding index =\",round(n2,5)\n", "print \"Crtical internal reflection angle =\",round(theta_c,1),\"degrees\"\n", "print \"External critical acceptance angle =\",round(theta_m,2),\"Degrees\"\n", "print \"Numerical aperture =\",round(NA,4)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Cladding index = 1.49925\n", "Crtical internal reflection angle = 88.2 degrees\n", "External critical acceptance angle = 2.72 Degrees\n", "Numerical aperture = 0.0474\n" ] } ], "prompt_number": 46 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.18, Page number 58" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Determine acceptance angle for fiber in water'''\n", "\n", "#Variable declaration\n", "NA = 0.20 #numerical aperture\n", "n2 = 1.59 #cladding refractive index\n", "n0 = 1.33 #refractive index for water \n", "\n", "#Calculations\n", "n1 = math.sqrt(NA**2+n2**2)\n", "NA = math.sqrt(n1**2-n2**2)/n0\n", "theta_m = math.degrees(math.asin(NA))\n", "\n", "#Result\n", "print \"Acceptance angle for fiber in water =\",round(theta_m,1),\"degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Acceptance angle for fiber in water = 8.6 degrees\n" ] } ], "prompt_number": 47 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.19, Page number 58" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Determine the numerical aperture and acceptance angle'''\n", "\n", "import math\n", "\n", "#Variable declaration\n", "n1 = 1.55 #core refractive index\n", "n2 = 1.51 #cladding refractive index\n", "\n", "#Calculation\n", "delta = (n1-n2)/n1\n", "NA = 2*math.sqrt(delta)\n", "\n", "theta_m = math.degrees(math.asin(NA))\n", "\n", "#Result\n", "print \"Numerical aperture =\",round(NA,4)\n", "print \"Acceptance angle =\",round(theta_m,2),\"degrees\"\n", "print \"\\nCalculation mistakes in textbook. Hence, the answers differ.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Numerical aperture = 0.3213\n", "Acceptance angle = 18.74 degrees\n", "\n", "Calculation mistakes in textbook. Hence, the answers differ.\n" ] } ], "prompt_number": 49 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.20, Page number 59" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Determine normalized frequency'''\n", "\n", "#Variable declaration\n", "n = 1.45 #core refractive index\n", "lamda = 0.1 #wavelength(um)\n", "a = 60/2 #core radius(um)\n", "NA = 0.16 #numerical aperture\n", "\n", "#Calculations\n", "v = (2*math.pi*a*NA)/lamda\n", "\n", "#Results\n", "print \"Normalized frequency =\",round(v,1),\"(Calculation mistake in textbook)\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Normalized frequency = 301.6 (Calculation mistake in textbook)\n" ] } ], "prompt_number": 50 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.21, Page number 59" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Calculate NA and multi path dospersion per unit length'''\n", "\n", "#Variable declaration\n", "c = 3.*10**8 #speed of light in vacuum(m/s)\n", "v = 2.*10**8 #speed of light in core(m/s)\n", "theta_c = 75 #cricial angle(degrees)\n", "\n", "#Calculations\n", "n1 = c/v\n", "n2 = n1*math.sin(math.radians(theta_c))\n", "NA = math.sqrt(n1**2-n2**2)\n", "\n", "delta_n = n1-n2\n", "md = (n1/n2)*(delta_n/c) #multipath dispersion\n", "\n", "#Results\n", "print \"Numerical aperture =\",round(NA,2)\n", "print \"Multi path dospersion per unit length =\",round((md/1E-9),3),\"*10^-9 s/m\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Numerical aperture = 0.39\n", "Multi path dospersion per unit length = 0.176 *10^-9 s/m\n" ] } ], "prompt_number": 51 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.22, Page number 60" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Determine maximum thickness of guide slab'''\n", "\n", "#Variable declaration\n", "n1 = 3.6 #core refractive index\n", "n2 = 3.56 #cladding refractive index\n", "lamda = 0.85 #wavelength(um)\n", "#For TE10 mode,\n", "m = 1\n", "n = 0\n", "vc = 2.405 #for planar guide\n", "\n", "#Calculation\n", "a = (vc*lamda)/(2*math.pi*math.sqrt(n1**2-n2**2))\n", "\n", "#Result\n", "print \"Maximum thickness of guide slab =\",round(a,3),\"um\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum thickness of guide slab = 0.608 um\n" ] } ], "prompt_number": 52 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.23, Page number 61" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Calculate diameter of core'''\n", "\n", "import math\n", "\n", "#Variable declaration\n", "n1 = 1.5 #core refractive index\n", "lamda = 1.3*10**-6 #wavelength(um)\n", "delta = 1./100. #relative index difference\n", "M = 1100\n", "\n", "#Calculations\n", "V = math.sqrt(2*M)\n", "\n", "a = (V*lamda)/(2*math.pi*n1*(2*delta)**0.5)\n", "\n", "d = 2*a\n", "\n", "#Result\n", "print \"Diameter =\",round(d/1E-5,2),\"um(Calculation mistake in textbook)\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Diameter = 9.15 um(Calculation mistake in textbook)\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.24, Page number 62" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Determine critical angle and numerical aperture'''\n", "\n", "\n", "#Variable declaration\n", "n1 = 1.50 #core refractive index\n", "n2 = 1.46 #cladding refractive index\n", "\n", "#Calculation\n", "theta_c = math.degrees(math.asin(n2/n1))\n", "\n", "NA = math.sqrt(n1**2-n2**2)\n", "\n", "#Result\n", "print \"Critical angle =\",round(theta_c,2),\"degrees\"\n", "print \"Numerical aperture =\",round(NA,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Critical angle = 76.74 degrees\n", "Numerical aperture = 0.34\n" ] } ], "prompt_number": 59 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.25, Page number 62" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Determine the acceptance angle for skew rays'''\n", "\n", "#Variable declaration\n", "NA = 0.344 #numerical aperture\n", "#Since skew rays change direction by 100 degrees at each reflection,\n", "gamma = 100/2 #degrees\n", "\n", "#Calculations\n", "#For meridional rays\n", "theta_a = math.degrees(math.asin(NA))\n", "#For speed rays\n", "theta_as = math.degrees(math.asin(NA/math.cos(math.radians(gamma))))\n", "\n", "#print\n", "print \"Acceptance angle for meridional rays =\",round(theta_a,2),\"degrees\"\n", "print \"Acceptance angle for speed rays =\",round(theta_as,2),\"degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Acceptance angle for meridional rays = 20.12 degrees\n", "Acceptance angle for speed rays = 32.36 degrees\n" ] } ], "prompt_number": 84 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.26, Page number 62" ] }, { "cell_type": "code", "collapsed": false, "input": [ "'''Calculate the no. of guided modes and cut-off value of normalized frequency'''\n", "\n", "import math\n", "\n", "#Variable declaration\n", "n1 = 1.5 #core refractive index\n", "lamda = 1.55 #wavelength(um)\n", "delta = 1.3/100. #relative index difference\n", "alpha = 1.90 #index profile\n", "a = 40/2 #core radius(um)\n", "\n", "#Calculations\n", "Mg = (alpha/(alpha+2))*((n1*2*math.pi*a)/lamda)**2*delta\n", "\n", "Vc = 2.405*math.sqrt(1+2/alpha)\n", "\n", "#Results\n", "print \"Number of guided modes =\",round(Mg)\n", "print \"Cut-off value of normalized frequency =\",round(Vc,2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Number of guided modes = 94.0\n", "Cut-off value of normalized frequency = 3.45\n" ] } ], "prompt_number": 61 } ], "metadata": {} } ] }