{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 9 - Curve fitting interpolation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 9_01 Pg No.277" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "solving linear equations \n", " a0 + 100a1 = 3/7 \n", " a0 + 101a1 = -4/7 \n", " we get\n", " a0 = 100 \n", " a1 = -1\n", "\n", " p(100) = 0 \n", " p(101) = -1\n", "\n" ] } ], "source": [ "from numpy.linalg import solve\n", "from numpy import mat\n", "from sympy import Symbol\n", "print 'solving linear equations \\n a0 + 100a1 = 3/7 \\n a0 + 101a1 = -4/7 \\n we get'#\n", "C = mat([[ 1, 100],[1 ,101] ])\n", "p = mat([[ 3/7],[-4/7] ])\n", "a = solve(C,p )\n", "print ' a0 = %.f \\n a1 = %.f'%(a[0],a[1])\n", "\n", "x = Symbol('x')\n", "def horner(a,x):\n", " px = a[0] + a[1]*x\n", " return px\n", "p100 = horner(a,100.0)\n", "p101 = horner(a,101.0)\n", "print '\\n p(100) = %.f \\n p(101) = %.f\\n'%(p100,p101)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 9_02 Page No. 278" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " a0 = 0.428571 \n", " a1 = -1.428571 \n", "\n", "\n", " p(100) = 0.428571 \n", " p(101) = -1.000000\n", "\n" ] } ], "source": [ "from numpy.linalg import solve\n", "from numpy import mat\n", "from sympy import Symbol\n", "\n", "C = mat([[1, 100-100],[1, 101-100]])\n", "p = mat([[ 3.0/7],[-4/7] ])\n", "a = solve(C,p)\n", "print '\\n a0 = %f \\n a1 = %f \\n'%(a[0],a[1])\n", "\n", "x = Symbol('x')\n", "def horner(a,x):\n", " px = a[0]+ a[1]*(x - 100) \n", " return px\n", "p100 = horner(a,100)\n", "p101 = horner(a,101)\n", "print '\\n p(100) = %f \\n p(101) = %f\\n'%(p100,p101)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 9_03 Page No. 280" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2.5 lies between points 2 and 3\n", "f(2.5) = 1.57315\n", "error1 = 0.00795\n", "The correct answer is 1.5811.The difference between results is due to use of a linear model to a nonlinear use\n", "repeating the procedure using x1 = 2 and x2 = 4\n", "error2 = 0.02045\n", "f(2.5) = 1.56065\n", "NOTE- The increase in error due to the increase in the interval between the interpolating data\n" ] } ], "source": [ "x = range(0,6)\n", "f = [0,1, 1.4142, 1.7321, 2, 2.2361]\n", "n = 2.5\n", "for i in range(1,6):\n", " if n <= x[(i)]:\n", " break;\n", " \n", "\n", "print '%.1f lies between points %d and %d'%(n,x[(i-1)],x[(i)])\n", "f2_5 = f[(i-1)] + ( n - x[(i-1)] )*( f[(i)] - f[(i-1)] )/( x[(i)] - x[(i-1)] )\n", "err1 = 1.5811 - f2_5\n", "print 'f(2.5) = ',f2_5\n", "print 'error1 = ',err1\n", "print 'The correct answer is 1.5811.The difference between results is due to use of a linear model to a nonlinear use'\n", "print 'repeating the procedure using x1 = 2 and x2 = 4'\n", "x1 = 2\n", "x2 = 4\n", "f2_5 = f[(x1)] + ( 2.5 - x1 )*( f[(x2)] - f[(x1)] )/( x2 - x1 )\n", "err2 = 1.5811 - f2_5\n", "print 'error2 = ',err2\n", "print 'f(2.5) = ',f2_5\n", "print 'NOTE- The increase in error due to the increase in the interval between the interpolating data'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 9_04 Pg No. 282" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "For x = 2.5 we have,\n", " L0(2.5) = 1.500000 \n", " L1(2.5) = 0.250000 \n", " L2(2.5) = 1.000000 \n", " p(2.5) = 8.893756 \n", "\n", "The error is -7.312617\n" ] } ], "source": [ "from sympy import Symbol\n", "from math import sqrt\n", "#Lagrange Interpolation- Second order\n", "\n", "X = [0, 1, 2 ,3 ,4 ,5]\n", "Fx = [0, 1, 1.4142 ,1.7321 ,2, 2.2361]\n", "X = X[2:5]\n", "Fx = Fx[2:5]\n", "x0 = 2.5 \n", "x = Symbol('x')\n", "p = 0\n", "L=[0]\n", "def horner(X,p,Fx,x,m):\n", " for i in range(1,3):\n", " L.append(1)\n", " for j in range(1,3):\n", " if j == i:\n", " continue #\n", " else:\n", " L[(i)] = L[(i)]*( x - X[(j)] )/( X[(i)] - X[(j)] ) \n", " \n", " p = p + Fx[(i)]*L[(i)] \n", " return [L[m],p]\n", "\n", "x=2.5\n", "L0 = horner(X,p,Fx,x,1)[0]\n", "L1 = horner(X,p,Fx,x,2)[0]\n", "L2 = horner(X,p,Fx,x,3)[0]\n", "p2_5 = horner(X,p,Fx,x,3)[1]\n", "print 'For x = 2.5 we have,\\n L0(2.5) = %f \\n L1(2.5) = %f \\n L2(2.5) = %f \\n p(2.5) = %f \\n'%(L0,L1,L2,p2_5)\n", "\n", "err = sqrt(2.5) - p2_5 #\n", "print 'The error is %f'%(err)# " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 9_05 Pg No. 283" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Lagrange basis polynomials are:\n", "(-x + 1)*(x - 3)*(x - 2)/6\n", "x*(x - 3)*(x - 2)/2\n", "-x*(x - 3)*(x - 1)/2\n", "x*(x - 2)*(x - 1)/6\n", "The interpolation polynomial is \n", "0.85915*x*(x - 3)*(x - 2) - 3.19455*x*(x - 3)*(x - 1) + 3.18091666666667*x*(x - 2)*(x - 1)\n", "The interpolation value at x = 1.5 is : 4.36756875000000 \n", "e**1.5 = 3.367569\n" ] } ], "source": [ "from sympy import Symbol\n", "#Lagrange Interpolation\n", "\n", "i = [ 0, 1, 2, 3 ]\n", "X = [ 0 ,1 ,2 ,3 ]\n", "Fx = [ 0 ,1.7183 ,6.3891, 19.0855 ]\n", "x = Symbol('x')\n", "n = 3 #order of lagrange polynomial \n", "p = 0\n", "L=[]\n", "for i in range(0,n+1):\n", " L.append(1)\n", " for j in range(0,n+1):\n", " if j == i:\n", " continue \n", " else:\n", " L[i] = L[i]*( x - X[j] )/( X[i] - X[j] ) \n", " \n", " \n", " p = p + Fx[i]*L[i]\n", "\n", "print \"The Lagrange basis polynomials are:\"\n", "for i in range(0,4):\n", " print str(L[i])\n", "\n", "\n", "print \"The interpolation polynomial is \"\n", "print str(p)\n", "\n", "print 'The interpolation value at x = 1.5 is :', \n", "\n", "p1_5 = p.subs(x,1.5)\n", "e1_5 = p1_5 + 1 #\n", "print e1_5,'\\ne**1.5 = %f'%(p1_5)# \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 9_06 Pg No. 288" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The coefficients of the polynomial are,\n", " a0 = 0 \n", " a1 = 0.301 \n", " a2 = -0.06245 \n", "\n", "Polynomial is : 0.301*x - 0.06245*(1.0*x - 2)*(1.0*x - 1) - 0.301\n", "p(2.5) = 0.4047 \n", "\n" ] } ], "source": [ "from numpy import zeros, prod, ones, array\n", "from sympy.abc import x\n", "i = [ 0, 1 ,2 ,3]\n", "X = range(1,5)\n", "Fx = [ 0, 0.3010, 0.4771, 0.6021] \n", "X = range(1,4)\n", "Fx = Fx[0:3]\n", "#x = poly(0,'x');\n", "#A = Fx'\n", "A=zeros([3,3])\n", "A[:,0]=Fx\n", "for i in range(2,4):\n", " for j in range(1,4-i+1):\n", " A[j-1,i-1] = ( A[j+1-1,i-1-1]-A[j-1,i-1-1] )/(X[j+i-1-1]-X[j-1]) ;\n", "\n", "print 'The coefficients of the polynomial are,\\n a0 = %.4G \\n a1 = %.4G \\n a2 = %.4G \\n'%(A[0,0],A[0,1],A[0,2])\n", "p = A[0,0]\n", "\n", "for i in range(2,4):\n", " p = p +A[0,i-1]* prod(array([x*xx for xx in ones([1,i-1])]) - array(X[0:i-1]))\n", "print 'Polynomial is : ',str(p)\n", "x=2.5\n", "p=A[0,0]\n", "for i in range(2,4):\n", " p = p +A[0,i-1]* prod(array([x*xx for xx in ones([1,i-1])]) - array(X[0:i-1]))\n", "print 'p(2.5) = %.4G \\n'%p" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 9_07 Pg No. 291" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " p0(1.5) = 0.000000 \n", " p1(1.5) = 3.500000 \n", " p2(1.5) = 2.000000 \n", " p3(1.5) = 2.375000 \n", " p4(1.5) = 2.375000 \n", "\n", "The function value at x = 1.5 is : 2.375\n" ] } ], "source": [ "from numpy import zeros, prod, ones, array\n", "#Newton Divided Difference Interpolation\n", "\n", "i = range(0,5)\n", "X = range(1,6)\n", "Fx = [ 0, 7 ,26 ,63 ,124]\n", "#x = Symbol('x')\n", "A=zeros([5,7])\n", "A[:,0]=i\n", "A[:,1]=X\n", "A[:,2]=Fx\n", "\n", "for i in range(4,8):\n", " for j in range(1,9-i):\n", " A[j-1,i-1] = ( A[j,i-2]-A[j-1,i-2] )/(X[j+i-4]-X[j-1]) \n", " \n", "\n", "p = A[0,2]\n", "p1_5 = [p,0,0,0,0,0,0,0] \n", "x=1.5\n", "for i in range(4,8):\n", " p = p +A[0,i-1]* prod(array([x*xx for xx in ones([1,i-3])]) - array(X[0:i-3]))\n", " p1_5[i-3] = p#horner(p,1.5)#\n", "\n", "print ' p0(1.5) = %f \\n p1(1.5) = %f \\n p2(1.5) = %f \\n p3(1.5) = %f \\n p4(1.5) = %f \\n'%(p1_5[0],p1_5[1],p1_5[2],p1_5[3],p1_5[4])\n", "print 'The function value at x = 1.5 is : ',p1_5[4] " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 9_08 Pg No. 297" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "A = \n", "[[ 1.00000000e+01 1.73600000e-01 1.68400000e-01 -1.04000000e-02\n", " -4.80000000e-03 4.00000000e-04]\n", " [ 2.00000000e+01 3.42000000e-01 1.58000000e-01 -1.52000000e-02\n", " -4.40000000e-03 0.00000000e+00]\n", " [ 3.00000000e+01 5.00000000e-01 1.42800000e-01 -1.96000000e-02\n", " 0.00000000e+00 0.00000000e+00]\n", " [ 4.00000000e+01 6.42800000e-01 1.23200000e-01 0.00000000e+00\n", " 0.00000000e+00 0.00000000e+00]\n", " [ 5.00000000e+01 7.66000000e-01 0.00000000e+00 0.00000000e+00\n", " 0.00000000e+00 0.00000000e+00]]\n", "\n", " p1(s) = 0.3472 \n", " p2(s) = 0.3472 \n", " p3(s) = 0.3472 \n", " p4(s) = 0.3472 \n", "\n", "Thus sin(25) = 0.3472 \n", " \n" ] } ], "source": [ "from numpy import diff, zeros, prod, array, ones\n", "from scipy.misc import factorial\n", "#Newton-Gregory forward difference formula\n", "\n", "X = [ 10, 20 ,30, 40, 50]\n", "Fx = [ 0.1736, 0.3420 ,0.5000 ,0.6428, 0.7660]\n", "#x = poly(0,'x'#\n", "\n", "A=zeros([5,6])\n", "A[:,0]=X\n", "A[:,1]=Fx\n", "\n", "\n", "for i in range(3,7):\n", " A[0:7-i,i-1] = diff(A[0:8-i,i-2])\n", " \n", "print 'A = \\n',A\n", "\n", "x0 = X[0]\n", "h = X[1] - X[0] #\n", "x1 = 25\n", "s = (x1 - x0)/h #\n", "p = [Fx[0]] \n", "\n", "for j in range(0,4):\n", " p.append(p[j] + prod( array([s*xx for xx in ones([1,j+1])])-array([range(0,j+1)]) )*A[0,j+1]/factorial(j+1))\n", "\n", "print '\\n p1(s) = %.4G \\n p2(s) = %.4G \\n p3(s) = %.4G \\n p4(s) = %.4G \\n'%(p[1],p[2],p[3],p[4]) \n", "print 'Thus sin(%d) = %.4G \\n '%(x1,p[4]) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 9_09 Pg No. 299" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "A=\n", "[[ 1.00000000e+01 1.73600000e-01 0.00000000e+00 0.00000000e+00\n", " 0.00000000e+00 0.00000000e+00]\n", " [ 2.00000000e+01 3.42000000e-01 1.68400000e-01 0.00000000e+00\n", " 0.00000000e+00 0.00000000e+00]\n", " [ 3.00000000e+01 5.00000000e-01 1.58000000e-01 -1.04000000e-02\n", " 0.00000000e+00 0.00000000e+00]\n", " [ 4.00000000e+01 6.42800000e-01 1.42800000e-01 -1.52000000e-02\n", " -4.80000000e-03 0.00000000e+00]\n", " [ 5.00000000e+01 7.66000000e-01 1.23200000e-01 -1.96000000e-02\n", " -4.40000000e-03 4.00000000e-04]]\n", "\n", " s = -3\n", "\n", "\n", " p1(s) = 0.3964 \n", " p2(s) = 0.2788 \n", " p3(s) = 0.3228 \n", " p4(s) = 0.3288 \n", "\n", " Thus sin(25) = 0.3288 \n", " \n" ] } ], "source": [ "from numpy import diff, prod, array, ones, zeros\n", "from scipy.misc import factorial\n", "#Newton Backward difference formula\n", "\n", "X = [ 10, 20, 30 ,40, 50]\n", "Fx = [ 0.1736, 0.3420, 0.5000, 0.6428, 0.7660]\n", "#x = poly(0,'x'#\n", "#A = [X' Fx']#\n", "A=zeros([5,6])\n", "A[:,0]=X\n", "A[:,1]=Fx\n", "\n", "\n", "for i in range(2,6):\n", " A[i-1:5,i] = diff(A[i-2:5,i-1])\n", "\n", "print 'A=\\n',A\n", "\n", "xn = X[4]\n", "h = 10 #\n", "xuk = 25#\n", "s = (xuk - xn)/h #\n", "print '\\n s =',s\n", "p = [Fx[4]]\n", "\n", "for j in range(1,5):\n", " p.append(p[j-1] + prod(array([s*xx for xx in ones([1,j])]-array([range(0,j)])))*A[4,j+1]/factorial(j) )\n", " \n", "print '\\n\\n p1(s) = %.4G \\n p2(s) = %.4G \\n p3(s) = %.4G \\n p4(s) = %.4G \\n'%(p[1],p[2],p[3],p[4]) \n", "print ' Thus sin(%d) = %.4G \\n '%(xuk,p[4]) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 9_10 Pg No. 301" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "case 1:\n", "The piecewise polynomials are continuous and f(x) is a linear spline\n", "case 2:\n", "The 1th derivative of polynomial is not continuours\n", "case 3\n", "The polynomial is continuous and its derivatives from 1 to 1 are continuous, f(x) is a 2th degree polynomial\n" ] } ], "source": [ "from sympy import symbols, degree\n", "from sympy.polys.polyfuncs import horner\n", "\n", "x = symbols('x')\n", "def isitspline(f1,f2,f3,x0,x1,x2,x3):\n", " n1 = degree(f1)\n", " n2 = degree(f2)\n", " n3 = degree(f3)\n", " n = max(n1,n2,n3)\n", " f1_x1 = f1.subs(x,x1)\n", " f2_x1 = f2.subs(x,x1)\n", " f2_x2 = f2.subs(x,x2)\n", " f3_x2 = f3.subs(x,x2)\n", " if n ==1 and f1_x1 == f2_x1 and f2_x2 == f3_x2:\n", " print 'The piecewise polynomials are continuous and f(x) is a linear spline'\n", " elif f1_x1 == f2_x1 and f2_x2 == f3_x2:\n", " for i in range(1,n):\n", " df1 = f1.diff()\n", " df2 = f2.diff()\n", " df3 = f3.diff()\n", " df1_x1 = df1.subs(x,x1)\n", " df2_x1 = df2.subs(x,x1)\n", " df2_x2 = df2.subs(x,x2)\n", " df3_x2 = df3.subs(x,x2)\n", " f1 = df1\n", " f2 = df2\n", " f3 = df3\n", " if df1_x1 != df2_x1 or df2_x2 != df3_x2:\n", " print 'The %dth derivative of polynomial is not continuours'%i\n", " break;\n", " \n", " \n", " if i == n-1 and df1_x1 == df2_x1 and df2_x2 == df3_x2:\n", " print 'The polynomial is continuous and its derivatives from 1 to %i are continuous, f(x) is a %ith degree polynomial'%(i,i+1)\n", " \n", " else:\n", " print 'The polynomial is not continuous'\n", " \n", " \n", "n = 4 \n", "x0 = -1 \n", "x1 = 0\n", "x2 = 1\n", "x3 = 2\n", "f1 = x+1 ;\n", "f2 = 2*x + 1 ;\n", "f3 = 4 - x ;\n", "print 'case 1:'\n", "isitspline(f1,f2,f3,x0,x1,x2,x3)\n", "n = 4\n", "x0 = 0 \n", "x1= 1 \n", "x2 = 2 \n", "x3 = 3\n", "f1 = x**2 + 1 ;\n", "f2 = 2*x**2 ;\n", "f3 = 5*x - 2 ;\n", "print 'case 2:'\n", "isitspline(f1,f2,f3,x0,x1,x2,x3)\n", "n = 4\n", "x0 = 0\n", "x1 = 1\n", "x2 = 2\n", "x3 = 3\n", "f1 = x\n", "f2 = x**2 - x + 1\n", "f3 = 3*x - 3\n", "print 'case 3'\n", "isitspline(f1,f2,f3,x0,x1,x2,x3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 9_11 Pg No. 306" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "h= [5 7]\n", "a1 = -0.0142857142857\n", "s(x) = 0.497619047619048*x - 0.0119047619047619*(1.0*x - 4)**3 + 0.00952380952380905\n", "s(7) : 3.17142857142857\n" ] } ], "source": [ "from numpy import array,diff, zeros, ones\n", "from sympy import symbols\n", "from __future__ import division\n", "X = [ 4, 9, 16]\n", "Fx = [ 2, 3, 4]\n", "n = len(X)\n", "h = diff(X)\n", "print 'h=',h\n", "x = symbols('x')\n", "#A(1) = 0;\n", "#A(n) = 0;\n", "A=zeros(n)\n", "#Since we do not know only a1 = A(2) we just have one equation which can be solved directly without solving tridiagonal matrix\n", "A[1] = 6*( ( Fx[2] - Fx[1] )/h[1] - ( Fx[1] - Fx[0] )/h[0] )/( 2*( h[0] + h[1] ) )\n", "print 'a1 = ',A[1]\n", "xuk = 7;\n", "for i in range(1,n):\n", " if xuk <= X[i]:\n", " break;\n", " \n", "\n", "#u = x*ones([1,2]) - X[i-1:i+1]\n", "u = array([x*xx for xx in ones([1,2])]) - array(X[i-1:i+1])\n", "s = ( A[1]*( u[0][i-1]**3 - ( h[i-1]**2 )*u[0][i-1])/6*h[i-1] ) + ( Fx[i]*u[0][i-1]- Fx[i-1]*u[0][i] )/h[i-1]\n", "print 's(x) =',s\n", "s_7 = s.subs(x,xuk);\n", "print 's(7) :',s_7" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 9_12 Pg No. 313" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "h= [1 1 1]\n", "[[4 1]\n", " [1 4]]\n", "D= [ 0.5004 0.1998]\n", "A= [ 0. 0.12012 0.01992 0. ]\n", "s(x) = -0.0666*x - 0.02002*(1.0*x - 3)**2 + 0.00332*(1.0*x - 2)**3 + 0.44648\n", "s(2.5): 0.275390000000000\n" ] } ], "source": [ "from numpy import diff, diag, transpose, zeros,array, ones\n", "from sympy import symbols\n", "from numpy.linalg import solve\n", "#Cubic Spline Interpolation\n", "\n", "X = range(1,5)\n", "Fx = [ 0.5, 0.3333, 0.25, 0.2]\n", "n = len(X)\n", "h = diff(X)\n", "print 'h=',h\n", "x = symbols('x')\n", "A=zeros(n)\n", "#Forming Tridiagonal Matrix\n", "#take make diagonal below main diagonal be 1 , main diagonal is 2 and diagonal above main diagonal is 3\n", "diag1 = h[1:n-2]\n", "diag2 = 2*(h[0:n-2]+h[1:n-1])\n", "diag3 = h[1:n-2]\n", "TridiagMat = diag(diag1,-1)+diag(diag2)+diag(diag3,1)\n", "print TridiagMat\n", "D = diff(Fx)#\n", "D = 6*diff(D/h)\n", "print 'D=',D\n", "A[1:n-1] = solve(array(TridiagMat),array(D))\n", "print 'A=',A\n", "xuk = 2.5;\n", "for i in range(1,n):\n", " if xuk <= X[i]:\n", " break;\n", " \n", "\n", "u = array([x*xx for xx in ones([1,2])]) - array(X[i-1:i+1])\n", "s = ( A[i-1]*( h[i]**2*u[0][1] - u[0][1]**2 )/( 6*h[i] ) ) + ( A[i]*( u[0][0]**3 - ( h[i-1]**2 )*u[0][0])/6*h[i-1] ) + ( Fx[i]*u[0][0]- Fx[i-1]*u[0][1] )/h[i-1];\n", "print 's(x) = ',s\n", "s2_5 = s.subs(x,xuk)\n", "print 's(2.5):',s2_5" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }