{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 7 - Direct solutions of linear equations"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 7_01 Pg No. 211"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "A =\n",
      "[[ 3  2  1 10]\n",
      " [ 0  2  2  8]\n",
      " [ 0  2  3 11]]\n",
      "After transformation\n",
      "A=\n",
      "[[ 3  2  1 10]\n",
      " [ 0  2  2  8]\n",
      " [ 0  0  1  3]]\n",
      "x = 1\n",
      "y = 1\n",
      "z = 3\n"
     ]
    }
   ],
   "source": [
    "from numpy import mat\n",
    "#Elimination Process\n",
    "\n",
    "A = mat([[3, 2, 1, 10],[2, 3, 2, 14],[1, 2, 3, 14]])\n",
    "A[1,:] = A[1,:] - A[0,:]*A[1,0]/A[0,0]\n",
    "A[2,:] = A[2,:] - A[0,:]*A[2,0]/A[0,0]\n",
    "print 'A =\\n',A\n",
    "\n",
    "print 'After transformation'\n",
    "A[2,:] = A[2,:] - A[1,:]*A[2,1]/A[1,1]\n",
    "print 'A=\\n',A\n",
    "\n",
    "z = A[2,3]/A[2,2]\n",
    "y = (A[1,3] - A[1,2]*z)/A[1,1]\n",
    "x = (A[0,3] - A[0,1]*y - A[0,2]*z)/A[0,0]\n",
    "print 'x =',x \n",
    "print 'y =',y \n",
    "print 'z =',z "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 7_02 Pg No. 214"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[[ 3  6  1 16]\n",
      " [ 2  4  3 13]\n",
      " [ 1  3  2  9]]\n",
      "since Aug(2,2) = 0 elimination is not possible,so reordering the matrix\n",
      "[[ 3  6  1 16]\n",
      " [ 2  4  3 13]\n",
      " [ 1  3  2  9]]\n",
      "Elimination is complete and by back substitution the solution is\n",
      "\n",
      "x3 = 1, x2 = 2 , x1 = 1 \n"
     ]
    }
   ],
   "source": [
    "from numpy import mat,shape\n",
    "#Basic Gauss Elimination\n",
    "\n",
    "\n",
    "A = mat([[  3,  6,  1],[ 2,  4 , 3],[ 1,  3,  2 ]])\n",
    "B = [16, 13, 9]\n",
    "S=shape(A)\n",
    "ar1,ac1 = S[0],S[1]\n",
    "Aug = mat([[3, 6 ,1 ,16],[2, 4, 3, 13],[1, 3, 2, 9]])\n",
    "for i in range(1,ar1):\n",
    "    Aug[i,:] = Aug[i,:] - (Aug[i,0]/Aug[0,0])*Aug[0,:] \n",
    "\n",
    "print Aug\n",
    "print 'since Aug(2,2) = 0 elimination is not possible,so reordering the matrix'\n",
    "temp=A[2,:]\n",
    "A[2,:]=A[1,:]\n",
    "A[1,:]=temp\n",
    "print Aug\n",
    "print 'Elimination is complete and by back substitution the solution is\\n'\n",
    "print 'x3 = 1, x2 = 2 , x1 = 1 '"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 7_03 Pg No. 220"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gauss Elimination using partial pivoting : ans is\n",
      "[  9.  -1. -10.]\n",
      "\n",
      " The solution can be obtained by back substitution \n",
      " x1 = 4 \n",
      " x2 = 0 \n",
      " x3 = -4 \n",
      "\n"
     ]
    }
   ],
   "source": [
    "from numpy import array , zeros, dot, diag\n",
    "\n",
    "A = array([[ 2.,  2.,  1.],[4.,  2.,  3.],[ 1.,  -1.,  1.]])\n",
    "B = array([[6.],[4.],[0.]])\n",
    "\n",
    "## Gauss Elimination using partial pivoting\n",
    "\n",
    "def GEPP(A, b):\n",
    "    '''\n",
    "    Gaussian elimination with partial pivoting.\n",
    "    % input: A is an n x n nonsingular matrix\n",
    "    %        b is an n x 1 vector\n",
    "    % output: x is the solution of Ax=b.\n",
    "    % post-condition: A and b have been modified. \n",
    "    '''\n",
    "    n =  len(A)\n",
    "    if b.size != n:\n",
    "        raise ValueError(\"Invalid argument: incompatible sizes between A & b.\", b.size, n)\n",
    "    # k represents the current pivot row. Since GE traverses the matrix in the upper \n",
    "    # right triangle, we also use k for indicating the k-th diagonal column index.\n",
    "    for k in xrange(n-1):\n",
    "        #Choose largest pivot element below (and including) k\n",
    "        maxindex = abs(A[k:,k]).argmax() + k\n",
    "        if A[maxindex, k] == 0:\n",
    "            raise ValueError(\"Matrix is singular.\")\n",
    "        #Swap rows\n",
    "        if maxindex != k:\n",
    "            A[[k,maxindex]] = A[[maxindex, k]]\n",
    "            b[[k,maxindex]] = b[[maxindex, k]]\n",
    "        for row in xrange(k+1, n):\n",
    "            multiplier = A[row][k]/A[k][k]\n",
    "            #the only one in this column since the rest are zero\n",
    "            A[row][k] = multiplier\n",
    "            for col in xrange(k + 1, n):\n",
    "                A[row][col] = A[row][col] - multiplier*A[k][col]\n",
    "            #Equation solution column\n",
    "            b[row] = b[row] - multiplier*b[k]\n",
    "    #print A ;print b\n",
    "    x = zeros(n)\n",
    "    k = n-1\n",
    "    x[k] = b[k]/A[k,k]\n",
    "    while k >= 0:\n",
    "        x[k] = (b[k] - dot(A[k,k+1:],x[k+1:]))/A[k,k]\n",
    "        k = k-1\n",
    "    return x\n",
    "Aug=GEPP(A,B)\n",
    "print 'Gauss Elimination using partial pivoting : ans is\\n',Aug\n",
    "\n",
    "#Back Substitution\n",
    "def forward_elimination(A, b, n):\n",
    "    \"\"\"\n",
    "    Calculates the forward part of Gaussian elimination.\n",
    "    \"\"\"\n",
    "    for row in range(0, n-1):\n",
    "        for i in range(row+1, n):\n",
    "            factor = A[i,row] / A[row,row]\n",
    "            for j in range(row, n):\n",
    "                A[i,j] = A[i,j] - factor * A[row,j]\n",
    "\n",
    "            b[i] = b[i] - factor * b[row]\n",
    "\n",
    "        \n",
    "    return A, b\n",
    "\n",
    "def back_substitution(a, b, n):\n",
    "    \"\"\"\"\n",
    "    Does back substitution, returns the Gauss result.\n",
    "    \"\"\"\n",
    "    x = zeros((n,1))\n",
    "    x[n-1] = b[n-1] / a[n-1, n-1]\n",
    "    for row in range(n-2, -1, -1):\n",
    "        sums = b[row]\n",
    "        for j in range(row+1, n):\n",
    "            sums = sums - a[row,j] * x[j]\n",
    "        x[row] = sums / a[row,row]\n",
    "    return x\n",
    "\n",
    "def gauss(A, b):\n",
    "    \"\"\"\n",
    "    This function performs Gauss elimination without pivoting.\n",
    "    \"\"\"\n",
    "    n = A.shape[0]\n",
    "\n",
    "    # Check for zero diagonal elements\n",
    "    if any(diag(A)==0):\n",
    "        raise ZeroDivisionError(('Division by zero will occur; '\n",
    "                                  'pivoting currently not supported'))\n",
    "\n",
    "    A, b = forward_elimination(A, b, n)\n",
    "    return back_substitution(A, b, n)\n",
    "\n",
    "x = gauss(A, B)\n",
    "print ('\\n The solution can be obtained by back substitution \\n x1 = %i \\n x2 = %i \\n x3 = %i \\n'%(x[0], x[1], x[2]))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 7_04 Pg No. 228"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Aug = \n",
      "[[  2   4  -6  -8]\n",
      " [  1   3   1  10]\n",
      " [  2  -4  -2 -12]]\n",
      "Aug = \n",
      "[[  1   2  -3  -4]\n",
      " [  1   3   1  10]\n",
      " [  2  -4  -2 -12]]\n",
      "Aug = \n",
      "[[  1   2  -3  -4]\n",
      " [  0   1   4  10]\n",
      " [  0  -8   4 -12]]\n",
      "Aug = \n",
      "[[  1   2  -3  -4]\n",
      " [  0   1   4  10]\n",
      " [  0  -8   4 -12]]\n",
      "Aug = \n",
      "[[  1   0 -11  -4]\n",
      " [  0   1   4  10]\n",
      " [  0   0  36 -12]]\n",
      "Aug = \n",
      "[[  1   0 -11  -4]\n",
      " [  0   1   4  10]\n",
      " [  0   0   1  -1]]\n",
      "Aug = \n",
      "[[ 1  0  0 -4]\n",
      " [ 0  1  0 10]\n",
      " [ 0  0  1 -1]]\n"
     ]
    }
   ],
   "source": [
    "from numpy import mat, shape\n",
    "#Gauss Jordan Elimination\n",
    "\n",
    "A = mat([[  2,  4,  -6],[1,  3,  1],[2,  -4,  -2  ]])\n",
    "B = mat([[  -8],[ 10],[ -12  ]])\n",
    "S=shape(A)\n",
    "ar, ac =S[0],S[1]\n",
    "Aug = mat([[  2,  4,  -6,  -8],[ 1,  3,  1,  10],[ 2,  -4,  -2,  -12  ]])\n",
    "print 'Aug = \\n',Aug\n",
    "\n",
    "\n",
    "for i in range(0,ar):\n",
    "    Aug[i,i:ar+1] = Aug[i,i:ar+1]/Aug[i,i]\n",
    "    print 'Aug = \\n',Aug\n",
    "    for k in range(0,ar):\n",
    "        if k != i:\n",
    "            Aug[k,i:ar] = Aug[k,i:ar] - Aug[k,i]*Aug[i,i:ar]\n",
    "        \n",
    "\n",
    "    print 'Aug = \\n',Aug"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 7_05 Pg No. 234"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "U = \n",
      "[[ 3.          2.          1.        ]\n",
      " [ 0.          1.66666667  1.33333333]\n",
      " [ 0.          0.          1.6       ]]\n",
      "L = \n",
      "[[ 1.          0.          0.        ]\n",
      " [ 0.66666667  1.          0.        ]\n",
      " [ 0.33333333  0.8         1.        ]]\n",
      "\n",
      " z(1) = 10.000000 \n",
      "\n",
      "\n",
      " z(2) = 14.000000 \n",
      "\n",
      "\n",
      " z(3) = 10.666667 \n",
      "\n",
      "\n",
      " x(3) = 6.666667 \n",
      "\n",
      "\n",
      " x(2) = 8.400000 \n",
      "\n",
      "\n",
      " x(1) = 1.111111 \n",
      "\n"
     ]
    }
   ],
   "source": [
    "from numpy import array, arange, zeros\n",
    "from scipy.linalg import lu\n",
    "from __future__ import division\n",
    "\n",
    "#DoLittle LU Decomposition\n",
    "\n",
    "A = array([[ 3,  2,  1],[2 , 3 , 2],[1,  2,  3  ]])\n",
    "B = array([[ 10],[14],[14  ]])\n",
    "n,n = A.shape\n",
    "L=lu(A)[1]\n",
    "U=lu(A)[2]\n",
    "print 'U = \\n',U\n",
    "print 'L = \\n',L\n",
    "\n",
    "z=zeros([3,1])\n",
    "#Forward Substitution\n",
    "for i in range(0,n):\n",
    "    z[i,0] = B[i,0]\n",
    "    for j in range(0,i-1):\n",
    "        z[i,0] = z[i,0] - L[i,0]*z[j,0];        \n",
    "    \n",
    "    print '\\n z(%i) = %f \\n'%(i+1,z[i,0])\n",
    "\n",
    "x=zeros([3,1])    \n",
    "#Back Substitution\n",
    "for i in arange(n-1,-1,-1):\n",
    "    x[i,0] = z[i,0]\n",
    "    for j in arange(n-1,i+1,-1):\n",
    "        x[i,0] = x[i,0] - U[i,j]*x[j,0]\n",
    "    \n",
    "    x[i,0] = x[i,0]/U[i,i]\n",
    "    print '\\n x(%i) = %f \\n'%(i+1,x[i,0])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 7_06 Pg No. 242"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "U =\n",
      "[[ 1.          2.          3.        ]\n",
      " [ 0.          2.82842712  7.77817459]\n",
      " [ 0.          0.          8.54400375]]\n"
     ]
    }
   ],
   "source": [
    "from numpy import sqrt, mat,shape, zeros\n",
    "#Cholesky's Factorisation\n",
    "\n",
    "A = mat([[ 1, 2, 3],[2, 8 ,22],[3, 22, 82 ]])\n",
    "n= shape(A)[0]\n",
    "U=zeros([n,n])\n",
    "\n",
    "for i in range(0,n):\n",
    "    for j in range(0,n):\n",
    "        if i == j:\n",
    "            U[i,i] = A[i,i]\n",
    "            for k in range(0,i-1):\n",
    "                U[i,i] = U[i,i]-U[k,i]**2 \n",
    "            \n",
    "            U[i,i] = sqrt(U[i,i])\n",
    "        elif i < j:\n",
    "            U[i,j] = A[i,j]\n",
    "            for k in range(0,i-1):\n",
    "                U[i,j] = U[i,j] - U[k,i]*U[k,j]\n",
    "             \n",
    "            U[i,j] = U[i,j]/U[i,i]\n",
    "       \n",
    "print 'U =\\n',U"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 7_07 Pg No. 245"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      " x(1) = 5.000000 \n",
      " x(2) = 5.000000 \n",
      "\n",
      "\n",
      " x(1) = -15.000000 \n",
      " x(2) = -15.000000 \n",
      "\n",
      "x=\n",
      "[[ 20.]\n",
      " [-15.]]\n",
      "r=\n",
      "[[ -2.66453526e-12]\n",
      " [  1.00000000e-02]]\n"
     ]
    }
   ],
   "source": [
    "from numpy import mat\n",
    "#Ill-Conditioned Systems\n",
    "\n",
    "A = mat([[ 2,  1],[2.001,  1]])\n",
    "B = mat([[ 25],[25.01 ]])\n",
    "x=[0,0]\n",
    "x[0] = (25 - 25.01)/(2 - 2.001)\n",
    "x[1] = (25.01*2 - 25*2.001)/(2*1 - 2.001*1)\n",
    "print '\\n x(1) = %f \\n x(2) = %f \\n'%(x[1],x[1])\n",
    "x[0] = (25 - 25.01)/(2 - 2.0005)#\n",
    "x[1] = (25.01*2 - 25*2.0005)/(2*1 - 2.0005*1)#\n",
    "print '\\n x(1) = %f \\n x(2) = %f \\n'%(x[1],x[1])\n",
    "x=mat([[x[0]],[x[1]]])\n",
    "r = A*(x)-B\n",
    "print 'x=\\n',x\n",
    "print 'r=\\n',r"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}