{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 6 - Roots of non linear equations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 6_01 Pg No. 126" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The largest possible root is x1 = [[4]]\n", "No root can be larger than the value = [[4]]\n", "\n", "All real roots lie in the interval (-3.741657,3.741657)\n", "\n", "We can use these two points as initial guesses for the bracketing methods and one of them for open end methods\n" ] } ], "source": [ "from numpy import mat,shape\n", "from math import sqrt\n", "\n", "#Possible Initial guess values for roots\n", "\n", "A = mat([[ 2],[-8] ,[2],[12]]) # Coefficients of x terms in the decreasing order of power\n", "n = shape(A)#\n", "x1 = -A[1]/A[0]#\n", "print 'The largest possible root is x1 =',x1\n", "print 'No root can be larger than the value =',x1\n", "\n", "x = sqrt((A[1]/A[0])**2 - 2*(A[2]/A[0])**2)\n", "\n", "print '\\nAll real roots lie in the interval (-%f,%f)\\n'%(x,x)\n", "print 'We can use these two points as initial guesses for the bracketing methods and one of them for open end methods'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 6_03 Pg No. " ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "p(4) = 1\n", "\n", " p(3)= -2\n", "\n", "\n", " p(2)= 1\n", "\n", "\n", " f(2) = p(1) = 0\n" ] } ], "source": [ "from numpy import mat,shape\n", "from math import sqrt\n", "#Evaluating Polynomial using Horner's rule\n", "\n", "#Coefficients of x terms in the increasing order of power\n", "A = mat([[6],[1],[-4],[1]])\n", "x = 2\n", "N=shape(A)\n", "n,c = N[0],N[1]\n", "p=[0,0,0]\n", "p.append(A[n-1])\n", "print 'p(4) =',p[n-1][0,0]\n", "for i in range(1,n-1):\n", " p[n-i]= p[n-i+1-1]*x + A[n-i-1]\n", " print '\\n p(%d)= %d\\n'%(n-i,p[n-i])\n", "\n", "print '\\n f(%d) = p(1) = %d'%(x,p[0])\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 6_04 Pg No. 132" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "First finding the interval that contains a root,this can be done by using Eq 6.10\n", "\n", " Both the roots lie in the interval (-6,6) \n", "\n", "\n", " The root lies in the interval (5,5)\n", "\n" ] } ], "source": [ "from numpy import poly1d,polyval, sqrt\n", "\n", "#Root of a Equation Using Bisection Method\n", "\n", "#Coefficients in increasing order of power of x starting from 0\n", "A = [-10 ,-4, 1]#\n", "print 'First finding the interval that contains a root,this can be done by using Eq 6.10'\n", "xmax = sqrt((A[1]/A[2])**2 - 2*(A[0]/A[2]))\n", "print '\\n Both the roots lie in the interval (-%d,%d) \\n'%(xmax,xmax)\n", "x = range(-6,7)\n", "p= poly1d(A)# p = poly(A,'x'%('c'\n", "\n", "fx = [p(xx) for xx in x]#\n", "for i in range(0,12):\n", " if fx[i]*fx[i] < 0:\n", " break \n", " \n", "\n", "print '\\n The root lies in the interval (%d,%d)\\n'%(x[i],x[i])\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 6_05 Pg No. 139" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Iteration No. 1 \n", "\n", "x0 = 1.000000 \n", "\n", "Iteration No. 2 \n", "\n", "x0 = 1.000000 \n", "\n", "Iteration No. 3 \n", "\n", "x0 = 1.000000 \n", "\n", "Iteration No. 4 \n", "\n", "x0 = 1.000000 \n", "\n", "Iteration No. 5 \n", "\n", "x0 = 1.000000 \n", "\n", "Iteration No. 6 \n", "\n", "x0 = 1.000000 \n", "\n", "Iteration No. 7 \n", "\n", "x0 = 1.000000 \n", "\n", "Iteration No. 8 \n", "\n", "x0 = 1.000000 \n", "\n", "Iteration No. 9 \n", "\n", "x0 = 1.000000 \n", "\n", "Iteration No. 10 \n", "\n", "x0 = 1.000000 \n", "\n", "Iteration No. 11 \n", "\n", "x0 = 1.000000 \n", "\n", "Iteration No. 12 \n", "\n", "x0 = 1.000000 \n", "\n", "Iteration No. 13 \n", "\n", "x0 = 1.000000 \n", "\n", "Iteration No. 14 \n", "\n", "x0 = 1.000000 \n", "\n", "Iteration No. 15 \n", "\n", "x0 = 1.000000 \n", "\n" ] } ], "source": [ "from numpy import poly1d,polyval\n", "\n", "#False Position Method\n", "\n", "#Coefficients of polynomial in increasing order of power of x\n", "A = [-2 , -1, 1]\n", "x1 = 1 #\n", "x2 = 3 #\n", "fx = poly1d(A)\n", "for i in range(1,16):\n", " print 'Iteration No. %d \\n'%(i)\n", " fx1 = fx(x1)\n", " fx2 = fx(x2)\n", " x0 = x1 - fx1*(x2-x1)/(fx2-fx1) \n", " print 'x0 = %f \\n'%(x0)#\n", " fx0 = fx(x0)#\n", " if fx1*fx0 < 0:\n", " x2 = x0 \n", " else:\n", " x1 = x0 #\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 6_07 Pg No. 147" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "x2 = 1.000000\n", "\n", "Since f(1.000000) = 0, the root closer to the point x = 0 is 1.000000 \n", "\n" ] } ], "source": [ "from numpy import poly1d,polyval,polyder\n", "#Root of the Equation using Newton Raphson Method\n", "\n", "#Coefficients of polynomial in increasing order of power of x\n", "A = [ 2, -3, 1]#\n", "fx = poly1d(A)\n", "dfx = polyder(fx)\n", "\n", "x=[0]\n", "f=[]\n", "df=[]\n", "for i in range(1,11):\n", " f.append(fx(x[i-1]))\n", " if f[i-1] != 0:\n", " df.append(dfx(x[i-1]))\n", " x.append(x[i-1] - f[i-1]/df[i-1])\n", " print 'x%d = %f\\n'%(i+1,x[i])# \n", " else:\n", " print 'Since f(%f) = 0, the root closer to the point x = 0 is %f \\n'%(x[i-1],x[i-1] )\n", " break\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 6_08 Pg No. 151" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "x2 = 3.342105\n", "\n", "x3 = 2.248631\n", "\n", "x4 = 1.535268\n", "\n", "x5 = 1.079139\n", "\n", "x6 = 0.797330\n", "\n", "x7 = 0.632716\n", "\n", "From the results we can see that number of correct digits approximately doubles with each iteration\n" ] } ], "source": [ "from numpy import poly1d,polyval,polyder\n", "\n", "#Root of the Equation using Newton Raphson Method\n", "\n", "#Coefficients of polynomial in increasing order of power of x\n", "A = [ 6, 1 , -4 , 1 ]\n", "fx = poly1d(A)\n", "dfx = polyder(fx)\n", "f=[];df=[]\n", "x = [5.0] #\n", "for i in range(1,7):\n", " f.append(fx(x[i-1]))\n", " if f[i-1] != 0:\n", " df.append(dfx(x[i-1]))\n", " x.append(x[i-1] - f[i-1]/df[i-1])\n", " print 'x%d = %f\\n'%(i+1,x[i])\n", " \n", "\n", "print 'From the results we can see that number of correct digits approximately doubles with each iteration'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 6_09 Pg No. 153" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " For Iteration No. 1\n", "\n", "\n", " x1 = 4.000000\n", " x2 = 2.000000 \n", " fx1 = -175.000000 \n", " fx2 = -47.000000 \n", " x3 = 1.265625 \n", "\n", "\n", " For Iteration No. 2\n", "\n", "\n", " x1 = 2.000000\n", " x2 = 1.265625 \n", " fx1 = -47.000000 \n", " fx2 = -20.080566 \n", " x3 = 0.717818 \n", "\n", "\n", " For Iteration No. 3\n", "\n", "\n", " x1 = 1.265625\n", " x2 = 0.717818 \n", " fx1 = -20.080566 \n", " fx2 = -7.023891 \n", " x3 = 0.423122 \n", "\n", "\n", " For Iteration No. 4\n", "\n", "\n", " x1 = 0.717818\n", " x2 = 0.423122 \n", " fx1 = -7.023891 \n", " fx2 = -2.482815 \n", " x3 = 0.261999 \n", "\n", "\n", " For Iteration No. 5\n", "\n", "\n", " x1 = 0.423122\n", " x2 = 0.261999 \n", " fx1 = -2.482815 \n", " fx2 = -0.734430 \n", " x3 = 0.194317 \n", "\n", "\n", " For Iteration No. 6\n", "\n", "\n", " x1 = 0.261999\n", " x2 = 0.194317 \n", " fx1 = -0.734430 \n", " fx2 = -0.154860 \n", " x3 = 0.176233 \n", "\n", "This can be still continued further for accuracy\n" ] } ], "source": [ "from __future__ import division\n", "from numpy import poly1d\n", "#Root of the equation using SECANT Method\n", "\n", "#Coefficients of polynomial in increasing order of power of x\n", "A = [ -10, -4, 1]\n", "x1 = 4 #\n", "x2 = 2 #\n", "fx = poly1d(A)\n", "for i in range(1,7):\n", " print '\\n For Iteration No. %d\\n'%(i)\n", " fx1 = fx(x1)\n", " fx2 = fx(x2)\n", " x3 = x2 - fx2*(x2-x1)/(fx2-fx1) #\n", " print '\\n x1 = %f\\n x2 = %f \\n fx1 = %f \\n fx2 = %f \\n x3 = %f \\n'%(x1,x2,fx1,fx2,x3) #\n", " x1 = x2#\n", " x2 = x3#\n", "\n", "print 'This can be still continued further for accuracy'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 6_11 Pg No. 161" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " x1 = -1.000000\n", "\n", "\n", " x2 = 1.000000\n", "\n", "\n", " x3 = 1.000000\n", "\n", "\n", "1.000000 is root of the equation,since x3 - x2 = 0 \n", "\n", "\n", "x1 = 1.000000\n", "\n", "\n", "x2 = 1.000000\n", "\n", "\n", " 1.000000 is root of the equation,since x2 - x1 = 0\n" ] } ], "source": [ "from numpy import poly1d\n", "from __future__ import division\n", "#Fixed point method\n", "\n", "#Coefficients of polynomial in increasing order of power of x\n", "A = [ -2, 1, 1 ]#\n", "B = [ 2, 0, -1 ]#\n", "gx = poly1d(B)\n", "x = [0] ##initial guess x0 = 0\n", "for i in range(2,11):\n", " x.append (gx(x[i-2]))\n", " print '\\n x%d = %f\\n'%(i-1,x[i-1])\n", " if (x[i-1]-x[(i-2)]) == 0:\n", " print '\\n%f is root of the equation,since x%d - x%d = 0 \\n'%(x[i-1],i-1,i-2)\n", " break\n", " \n", "\n", "#Changing initial guess x0 = -1\n", "x[0] = -1 #\n", "for i in range(2,11):\n", " x[i-1]= gx(x[i-2])\n", " print '\\nx%d = %f\\n'%(i-1,x[i-1])\n", " if (x[i-1]-x[i-2]) == 0:\n", " print '\\n %f is root of the equation,since x%d - x%d = 0'%(x[i-1],i-1,i-2)\n", " break" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 6_12 Pg No. 162" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " x0 = 1.000000 \n", "\n", " x1 = 2.500000 \n", "\n", " x2 = 1.666667 \n", "\n", " x3 = 1.250000 \n", "\n", " x4 = 1.000000 \n", "\n", "\n", " x0 = 0.000000 \n", "\n", " x1 = 1.000000 \n", "\n", " x2 = 7.000000 \n", "\n", " x3 = 15.000000 \n", "\n", " x4 = 25.000000 \n", "\n", "\n", " x0 = 1.000000 \n", "\n", " x1 = 2.250000 \n", "\n", " x2 = 2.333333 \n", "\n", " x3 = 2.625000 \n", "\n", " x4 = 3.000000 \n", "\n", " x5 = 3.416667 \n", "\n", " x6 = 3.857143 \n", "\n" ] } ], "source": [ "#Fixed point method\n", "\n", "A = [ -5, 0, 1 ]#\n", "def g(x):\n", " x = 5.0/x\n", " return x\n", "x = [1] #\n", "print '\\n x0 = %f \\n'%(x[0])\n", "for i in range(2,6):\n", " x.append(g(i))\n", " print ' x%d = %f \\n'%(i-1,x[i-1])\n", " \n", "\n", "#Defining g(x) in different way\n", "def g(x):\n", " x = x**2 + x - 5\n", " return x\n", "x=[0]\n", "print '\\n x0 = %f \\n'%(x[0])\n", "for i in range(2,6):\n", " x.append(g(i))\n", " print ' x%d = %f \\n'%(i-1,x[i-1])\n", "\n", "#Third form of g(x)\n", "def g(x):\n", " x = (x + 5/x)/2\n", " return x\n", "x=[1]\n", "print '\\n x0 = %f \\n'%(x[0])\n", "for i in range(2,8):\n", " x.append(g(i))\n", " print ' x%d = %f \\n'%(i-1,x[i-1])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 6_13 Pg No. 169" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " x**2 - y**2 = 3 \n", " x**2 + x*y \n", "\n", "\n", " x0 = 1.000000 \n", " y0 = 1.000000 \n", "\n", "\n", " x1 = 2.500000 \n", " y1 = 5.000000 \n", "\n", "\n", " x2 = 2.750000 \n", " y2 = 1.000000 \n", "\n", "\n", " x3 = 3.500000 \n", " y3 = -1.000000 \n", "\n" ] } ], "source": [ "#Solving System of non-linear equations using FIXED POINT METHOD\n", "\n", "print ' x**2 - y**2 = 3 \\n x**2 + x*y \\n'\n", "def f(x,y):\n", " x = y + 3/(x+y)\n", " return x\n", "def g(x):\n", " y = (6-x**2)/x\n", " return y\n", "x=[1]\n", "y=[1]\n", "print '\\n x0 = %f \\n y0 = %f \\n'%(x[0],y[0])\n", "for i in range(2,5):\n", " x.append(f((i-1),(i-1)))\n", " y.append(g((i-1)))\n", " print '\\n x%d = %f \\n y%d = %f \\n'%(i-1,x[i-1],i-1,y[i-1])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 6_14 Pg No. 172" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "x**2 + x*y = 6 \n", " x**2 - y**2 = 3 \n", "\n", "\n", " x1 = 0.875000 \n", " y1 = -0.625000 \n", "\n", "\n", " x2 = -0.437500 \n", " y2 = -2.687500 \n", "\n" ] } ], "source": [ "#Solving System of Non-linear equations using Newton Raphson Method\n", "\n", "\n", "print 'x**2 + x*y = 6 \\n x**2 - y**2 = 3 \\n'#\n", "def F(x,y):\n", " f = x**2 + x*y - 6\n", " return f\n", "def G(x,y):\n", " g = x**2 - y**2 -3\n", " return g\n", "def dFx(x,y):\n", " f1 = 2*x + y\n", " return f1\n", "def dFy(x,y):\n", " f2 = y\n", " return f2\n", "def dGx(x,y):\n", " g1 = 2*x\n", " return g1\n", "def dGy(x,y):\n", " g2 = -2*y\n", " return g2\n", "x=[1]\n", "y=[1]\n", "\n", "for i in range(2,4):\n", " Fval = F(i,i)\n", " Gval = G(i,i)\n", " f1 = dFx(i-1,i-1)\n", " f2 = dFy(i-1,i-1)\n", " g1 = dGx(i-1,i-1)\n", " g2 = dGy(i-1,i-1)\n", " D = f1*g2 - f2*g1 \n", " \n", " x.append(x[i-2] - (Fval*g2 - Gval*f2)/D )\n", " y.append(y[i-2] - (Gval*f1 - Fval*g1)/D )\n", " print '\\n x%d = %f \\n y%d = %f \\n'%(i-1,x[i-1],i-1,y[i-1]) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 6_15 Pg No. 176" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "b3 = 0.000000\n", "\n", "b2 = 0.000000\n", "\n", "b1 = 0.000000\n", "\n", "Thus the polynomial is\n", " 2\n", "15 x - 7 x + 1\n" ] } ], "source": [ "from __future__ import division\n", "from numpy import poly1d, arange\n", "#Synthetic Division\n", "\n", "a = [-9 ,15 ,-7, 1]\n", "b=[0,0,0,0]\n", "for i in arange(3,0,-1):\n", " b[i]= a[i] + b[i]*3\n", " print 'b%d = %f\\n'%(i,b[i-1])\n", "print 'Thus the polynomial is' \n", "print poly1d(b)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 6_16 Pg No. 187" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "b3 = 1.000000 \n", "\n", "b2 = 1.800000 \n", "\n", "b1 = 3.240000 \n", "\n", "b0 = 14.032000 \n", "\n", "c3 = 1.000000 \n", "\n", "c2 = 1.800000 \n", "\n", "c1 = 3.240000 \n", "\n", "c0 = 14.032000 \n", "\n", "\n", " D = 4.240000 \n", " du = -0.694340 \n", " dv = -5.250566 \n", " u = 1.105660\n", " v = -1.694340 \n", "\n" ] } ], "source": [ "#Quadratic factor of a polynomial using Bairstow's Method\n", "\n", "a = [ 10, 1 ,0 ,1]#\n", "n = len(a)#\n", "u = 1.8 #\n", "v = -1 #\n", "b=[];c=[]\n", "for nn in range(n):\n", " b.append(0)\n", " c.append(0)\n", "b[n-1] = a[n-1]\n", "b[n-2] = a[n-2] + u*b[n-1]\n", "c[n-1] = 0 \n", "c[n-2] = b[n-1]\n", "\n", "\n", "for i in range(n-2,0,-1):\n", " b[i-1]= a[i-1]+ u*b[i] + v*b[i+1]\n", " c[i-1]= b[i] + u*c[i] + v*c[i+1] \n", "\n", "\n", "for i in range(n,0,-1):\n", " print 'b%d = %f \\n'%(i-1,b[i-1])\n", "\n", "for i in range(n,0,-1):\n", " print 'c%d = %f \\n'%(i-1,b[i-1])\n", "\n", "\n", "D = c[1]*c[1] - c[0]*c[2]\n", "du = -1*(b[1]*c[1] - c[0]*c[2])/D \n", "dv = -1*(b[0]*c[1] - b[1]*c[0])/D \n", "u = u + du #\n", "v = v + du #\n", "print '\\n D = %f \\n du = %f \\n dv = %f \\n u = %f\\n v = %f \\n'%(D,du,dv,u,v)\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example No. 6_17 Pg No. 197" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " x1 = 0.000000\n", " x2 = 1.000000\n", " x3 = 2.000000\n", " f1 = -20.000000\n", " f2 = -7.000000\n", " f3 = 16.000000\n", " h1 = -2.000000\n", " h2 = -1.000000\n", " d1 = -36.000000\n", " d2 = -23.000000\n", " a0 = 16.000000\n", " a1 = 28.000000\n", " a2 = 5.000000\n", " h4 = -0.645934\n", " x4 = 1.354066\n", " \n", "\n", " x1 = 1.000000\n", " x2 = 2.000000\n", " x3 = 1.354066\n", " f1 = -7.000000\n", " f2 = 16.000000\n", " f3 = -0.309679\n", " h1 = -0.354066\n", " h2 = 0.645934\n", " d1 = -6.690321\n", " d2 = 16.309679\n", " a0 = -0.309679\n", " a1 = 21.145451\n", " a2 = 6.354066\n", " h4 = 0.014581\n", " x4 = 1.368647\n", " \n", "\n", " x1 = 2.000000\n", " x2 = 1.354066\n", " x3 = 1.368647\n", " f1 = 16.000000\n", " f2 = -0.309679\n", " f3 = -0.003394\n", " h1 = 0.631353\n", " h2 = -0.014581\n", " d1 = 16.003394\n", " d2 = -0.306286\n", " a0 = -0.003394\n", " a1 = 21.103381\n", " a2 = 6.722713\n", " h4 = 0.000161\n", " x4 = 1.368808\n", " \n", "\n", " x1 = 1.354066\n", " x2 = 1.368647\n", " x3 = 1.368808\n", " f1 = -0.309679\n", " f2 = -0.003394\n", " f3 = -0.000001\n", " h1 = -0.014742\n", " h2 = -0.000161\n", " d1 = -0.309678\n", " d2 = -0.003392\n", " a0 = -0.000001\n", " a1 = 21.096136\n", " a2 = 6.091521\n", " h4 = 0.000000\n", " x4 = 1.368808\n", " \n", "root of the polynomial is x4 = 1.368808\n" ] } ], "source": [ "from math import sqrt\n", "#Solving Leonard's equation using MULLER'S Method\n", "\n", "def f(x):\n", " y = x**3 + 2*x**2 + 10*x - 20\n", " return y\n", "x1 = 0 #\n", "x2 = 1 #\n", "x3 = 2 #\n", "for i in range(1,11):\n", " f1 = f(x1)\n", " f2 = f(x2)\n", " f3 = f(x3)\n", " h1 = x1-x3 #\n", " h2 = x2-x3 #\n", " d1 = f1 - f3 #\n", " d2 = f2 - f3 #\n", " D = h1*h2*(h1-h2)#\n", " a0 = f3 #\n", " a1 = (d2*h1**2 - d1*h2**2)/D #\n", " a2 = (d1*h2 - d2*h1)/D #\n", " if abs(-2*a0/( a1 + sqrt( a1**2 - 4*a0*a2 ) )) < abs( -2*a0/( a1 - sqrt( a1**2 - 4*a0*a2 ) )):\n", " h4 = -2*a0/(a1 + sqrt(a1**2 - 4*a0*a2))#\n", " else:\n", " h4 = -2*a0/(a1 - sqrt(a1**2 - 4*a0*a2))\n", " \n", " x4 = x3 + h4 #\n", " print '\\n x1 = %f\\n x2 = %f\\n x3 = %f\\n f1 = %f\\n f2 = %f\\n f3 = %f\\n h1 = %f\\n h2 = %f\\n d1 = %f\\n d2 = %f\\n a0 = %f\\n a1 = %f\\n a2 = %f\\n h4 = %f\\n x4 = %f\\n '%(x1,x2,x3,f1,f2,f3,h1,h2,d1,d2,a0,a1,a2,h4,x4) #\n", " relerr = abs((x4-x3)/x4)#\n", " if relerr <= 0.00001:\n", " print 'root of the polynomial is x4 = %f'%(x4)\n", " break\n", " \n", " x1 = x2 #\n", " x2 = x3 #\n", " x3 = x4 #" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }