{ "metadata": { "name": "", "signature": "sha256:41d72ff7de4eab79477527ee635fed63748fe3041e37a18b80daacf784f19007" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter2-Radioactivity and Isotopes" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg88" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Exa2.1: : Page-88 (2011) \n", "#find Weight of one Curie of RaB and Weight of one Rutherford of RaB\n", "T = 26.8*60; ## Half life of the substance, s\n", "C = 3.7e+010; ## One curie, disintegration per sec\n", "N = 6.022137e+026; ## Avogadro number, per kmol\n", "m = 214.; ## Molecular weight of RaB, kg/kmol\n", "R = 1e+006; ## One Rutherford, disintegration per sec.\n", "W_C = C*T*m/(N*0.693); ## Weight of one Curie of RaB, Kg \n", "W_R = R*T*m/(N*0.693); ## Weight of one Rutherford of RaB, Kg \n", "print\"%s %.2e %s %.2e %s \"%(\"\\nWeight of one Curie of RaB : \",W_C,\" Kg\"and \" \\nWeight of one Rutherford of RaB : \",W_R,\" Kg\");\n", "\n", "## Result\n", "## Weight of one Curie of RaB : 3.051e-011 Kg \n", "## Weight of one Rutherford of RaB : 8.245e-016 Kg " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Weight of one Curie of RaB : 3.05e-11 \n", "Weight of one Rutherford of RaB : 8.25e-16 Kg \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg88" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa2.2 : : Page 88 (2011)\n", "#find The maximum activity of Na-24 and The time needed to produced 90 percent of the maximum activity\n", "import math\n", "T_h = 14.8; ## Half life of Na-24, hours\n", "Q = 1e+008; ## Production rate of Na-24, per sec\n", "L = 0.693/T_h; ## Decay constant, per sec\n", "t = 2.; ## Time after the bombardment, hours\n", "A = Q/3.7e+010*1000; ## The maximum activity of Na-24, mCi\n", "T = -1*math.log(0.1)/L; ## The time needed to produced 90% of the maximum activity, hour\n", "N = 0.9*Q*3600./L*math.e**(-L*t); ## Number of atoms of Na-24 left two hours after bombardment was stopped\n", "print'%s %.2f %s %.2f %s %.2f %s '%(\"\\nThe maximum activity of Na-24 = \",A,\" mCi\"and \"\\nThe time needed to produced 90 percent of the maximum activity =\",T,\" hrs\" and\"\\nNumber of atoms of Na-24 left two hours after bombardment was stopped = \",N,\"\")\n", "\n", "\n", "## Result\n", "## The maximum activity of Na-24 = 2.7 mCi\n", "## The time needed to produced 90 percent of the maximum activity = 49.2 hrs \n", "## Number of atoms of Na-24 left two hours after bombardment was stopped = 6.30e+012 " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The maximum activity of Na-24 = 2.70 \n", "The time needed to produced 90 percent of the maximum activity = 49.17 \n", "Number of atoms of Na-24 left two hours after bombardment was stopped = 6300897280447.79 \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg89" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa2.3: : Page 89 (2011)\n", "#find The activity of K-40 and disintegrations\n", "T = 1.31e+09*365*24*60*60; ## Half life of the substance,sec\n", "N = 6.022137e+026; ## Avogadro number.\n", "m = 0.35*0.012*10**-2; ## Mass of K-40, Kg.\n", "A = m*N*0.693/(T*40); ## Activity of K-40, disintegrations/sec. \n", "print'%s %.2e %s %.3f %s '%(\"\\nThe activity of K-40 = \",A,\" \"and \"disintegrations/sec = \",A/3.7e+004,\" micro-curie\");\n", "\n", "## Result\n", "## The activity of K-40 = 1.061e+004 disintegrations/sec = 0.287 micro-curie " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The activity of K-40 = 1.06e+04 disintegrations/sec = 0.287 micro-curie \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg89" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa2.4 : : Page 89 (2011)\n", "#find The age of the boat\n", "import math\n", "T = 5568; ## Half life of the C-14,years\n", "D = 0.693/T; ## Disintegration constant, years^-1.\n", "N_0 = 15.6/D; ## Activity of fresh carbon, dpm .gm\n", "N = 3.9/D; ## Activity of an ancient wooden boat,dpm.gm.\n", "t = 1/(D)*math.log(N_0/N); ## Age of the boat, years\n", "print'%s %.2e %s'%(\"\\nThe age of the boat : \",t,\" years\")\n", "\n", "## Result\n", "## The age of the boat : 1.114e+004 years" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The age of the boat : 1.11e+04 years\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg90" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa2.5 : : Page 90 (2011)\n", "#find The activity of U-234 \n", "import math\n", "m_0 = 3e-06;## Initial mass of the U-234, Kg\n", "A = 6.022137e+026; ##Avagadro's number, atoms\n", "N_0 = m_0*A/234.; ## Initial number of atoms\n", "T = 2.50e+05; ## Half life, years\n", "D= 0.693/T; ## Disintegration constant\n", "t = 150000; ## Disintegration time, years\n", "m = m_0*math.e**(-D*t); ## Mass after time t,Kg\n", "activity = m*D/(365.*24.*60.*60.)*A/234.; ## Activity of U-234 after time t,dps\n", "print'%s %.1f %s %.2f %s'%(\"\\nThe activity of U-234 after \",t,\"\"and\" yrs = \",activity,\" disintegrations/sec\");\n", "\n", "## Result\n", "## The activity of U-234 after 150000 yrs = 4.478e+005 disintegrations/sec" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The activity of U-234 after 150000.0 447778.26 disintegrations/sec\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg90" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa2.6 : : Page 90 (2011)\n", "#find The number of alpha decays in Th-232\n", "import math\n", "A = 6.022137e+023; ##Avagadro's number, atoms\n", "N_0 = A/232.; ## Initial number of atoms\n", "t = 3.150e+07; ## Decay time, sec\n", "D = 1.58e-018; ## Disintegration constant,sec^-1\n", "N = D*t*N_0; ## Number of alpha decays in Th-232\n", "print'%s %.2e %s'%(\"\\nThe number of alpha decays in Th-232 = \", N,\"\");\n", "\n", "## Result\n", "## The number of alpha decays in Th-232 = 1.29e+011" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The number of alpha decays in Th-232 = 1.29e+11 \n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg90" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa2.7 : : Page 90 (2011)\n", "#find The maximum possible age of the earth crust\n", "import math\n", "T_238 = 4.5e+09;## Half life of U-238, years\n", "T_235 = 7.13e+08; ## Half life of U-238, years\n", "lambda_238 = 0.693/T_238; ## Disintegration constant of U-238, years^-1\n", "lambda_235 = 0.693/T_235; ## Disintegration constant of U-235, years^-1 \n", "N = 137.8; ## Abundances of U-238/U-235\n", "t = math.log(N)/(lambda_235 - lambda_238);## Age of the earth's crust, years\n", "print'%s %.2e %s'%(\"\\nThe maximum possible age of the earth crust = \",t,\" years\");\n", "\n", "## Result \n", "## The maximum possible age of the earth crust = 6.022e+009 years " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The maximum possible age of the earth crust = 6.02e+09 years\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8-pg91" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa2.8 : : Page 91 (2011)\n", "#find The number of half lives in radon-222\n", "import math\n", "N = 10; ## Number of atoms left undecayed in Rn-222\n", "n = math.log(10)/math.log(2); ## Number of half lives in Ra-222\n", "print'%s %.2f %s'%(\"\\nThe number of half lives in radon-222 = \", n,\"\");\n", "\n", "## Result\n", "## The number of half lives in radon-222 = 3.322 " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The number of half lives in radon-222 = 3.32 \n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex9-pg91" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa2.9 : : Page 91 (2011)\n", "#find The weight of Po-210 after one year and The initial activity of the material\n", "import math\n", "M_Po = 209.9829; ## Mass of Polonium, g\n", "M_Pb = 205.9745; ## Mass of lead, g\n", "A = 6.22137e+023; ## Avogadro's number\n", "M_He = 4.0026; ## Mass of alpha particle, g\n", "C = 3e+08; ## Velocity of light, m/s\n", "T = 138*24*3600; ## Half life, sec\n", "P = 250; ## Power produced, joule/sec\n", "Q = (M_Po-M_Pb-M_He)*931.25; ## disintegration energy, MeV\n", "D = 0.693/T; ## Disintegration constant, per year\n", "N = P/(D*Q*1.60218e-013); ## Number of atoms, atom\n", "N_0 = N*math.e**(1.833); ## Number of atoms present initially, atom\n", "W = N_0/A*210; ## Weight of Po-210 after one year, g\n", "A_0 = N_0*D/(3.7e+010); ## Initial activity, curie\n", "print'%s %.2f %s %.2e %s'%(\"\\nThe weight of Po-210 after one year = \",W,\" g\"and\" \\nThe initial activity of the material = \",A_0,\" curies\");\n", "\n", "## Result\n", "## The weight of Po-210 after one year = 10.49 g \n", "## The initial activity of the material = 4.88e+004 curies" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The weight of Po-210 after one year = 10.49 \n", "The initial activity of the material = 4.88e+04 curies\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex10-pg91" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa2.10 : : Page 91 (2011)\n", "#find The decay constant for total emission and The decay constant for beta_decay lambda_b and The decay constant for beta_decay lambda_a\n", "import math\n", "lambda_t = 0.693/(60.5*60);## Total decay constant, per sec\n", "lambda_a = 0.34*lambda_t;## Decay constant for alpha_decay, per sec\n", "lambda_b = 0.66*lambda_t;## Decay constant for beta_decay, per sec\n", "print'%s %.2e %s'%(\"\\nThe decay constant for total emission = \",lambda_t,\" /sec\");\n", "print'%s %.2e %s'%(\"\\nThe decay constant for beta_decay lambda_b = \",lambda_b,\" /sec\");\n", "print'%s %.2e %s'%(\"\\nThe decay constant for alpha_decay lambda_a = \",lambda_a,\" /sec\");\n", "\n", "## Result \n", "## The decay constant for total emission = 1.91e-004 /sec\n", "## The decay constant for beta_decay lambda_b = 1.26e-004 /sec\n", "## The decay constant for alpha_decay lambda_a = 6.49e-005 /sec " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The decay constant for total emission = 1.91e-04 /sec\n", "\n", "The decay constant for beta_decay lambda_b = 1.26e-04 /sec\n", "\n", "The decay constant for alpha_decay lambda_a = 6.49e-05 /sec\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex13-pg93" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa2.13 : : Page 93 (2011)\n", "#find The half life of Pu-239 \n", "import math\n", "M_A = 4.; ## Mass of alpha particle, amu\n", "M_U = 235.; ##Mass of U-235, amu\n", "M_P = 239.; ## Mass of P-239, amu\n", "Amount = 120.1; ## quantity of P-239, g\n", "E_A = 5.144; ## Energy of emitting alpha particles, Mev\n", "E_R = (2.*M_A)/(2.*M_U)*E_A; ## The recoil energy of U-235, Mev\n", "E = E_R + E_A; ## The energy released per disintegration, Mev\n", "P = 0.231; ## Evaporation rate, watt\n", "D = P/(E*1.60218e-013); ## Disintegration rate, per sec\n", "A = 6.022137e+023; ## Avagadro's number, atoms\n", "N = Amount/M_P*A; ## Number of nuclei in 120.1g of P-239\n", "T = 0.693/(D*3.15e+07)*N; ## Half life of Pu_239, years\n", "print'%s %.2e %s'%(\"\\nThe half life of Pu-239 = \",T,\" years\");\n", "\n", "## Result \n", "## The half life of Pu-239 = 2.42e+004 years " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The half life of Pu-239 = 2.42e+04 years\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex14-pg93" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa2.14 : : Page 93 (2011)\n", "#find The disintegration rate of Au-199\n", "import math\n", "T_h_1 = 2.7*24*3600; ## Half life of Au-198, sec\n", "T_h_2 = 3.15*24*3600; ## Half life of Au-199, sec\n", "S_1 = 99e-028; ## Crossection for first reaction, Sq.m\n", "S_2 = 2.6e-024; ## Crossection for second reaction, Sq.m\n", "I = 1e+018; ## Intensity of radiation, per Sq.m per sec\n", "L_1 = I*S_1; ## Decay constant of Au-197, per sec\n", "L_2 = 0.693/T_h_1+I*S_2; ## Decay constant of Au-198, per sec\n", "L_3 = 0.693/T_h_2; ## Decay constant of Au-199, per sec\n", "N_0 = 6.022137e+023; ## Avogadro number\n", "N_1 = N_0/197.; ## Initial number of atoms of Au-197\n", "t = 30.*3600.; ## Given time, sec\n", "p = (math.exp(-L_1*t))/((L_2-L_1)*(L_3-L_1));\n", "q = (math.exp(-L_2*t))/((L_1-L_2)*(L_3-L_2));\n", "r = (math.exp(-L_3*t))/((L_1-L_3)*(L_2-L_3));\n", "N3 = N_1*L_1*L_2*(p+q+r);\n", "N_199 = N3;\n", "L = L_3*N_199; ## Disintegration rate of Au-199, per sec\n", "print'%s %.2e %s'%(\"\\nThe disintegration rate of Au-199 = \", L,\"\");\n", "\n", "## Result\n", "## The disintegration rate of Au-199 = 1.9e+012 (Wrong answer in the textbook)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The disintegration rate of Au-199 = 1.88e+12 \n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex15-pg94" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa2.15 : : Page 94 (2011)\n", "#find The maximum activity of Na-24 and The activity after a continuous bombardment\n", "import math\n", "Y = 110e-03;## Yield of Na-24, mCi/hr\n", "T = 14.8;## Half life of Na-24, hours\n", "t = 8;## Time after which activity to be compute, hours\n", "D = 0.693/T;## Disintegration constant, hours^-1\n", "A = 1.44*Y*T;## Maximum activity of Na-24, Ci\n", "A_C = A*(1-math.e**(-D*t));## Activity after a continuous bombardment, Ci\n", "Activity = A_C*(math.e**(-D*t));## Activity after 8hours, Ci\n", "print'%s %.2f %s %.2f %s %.2f %s '%(\"\\nThe maximum activity of Na-24 = \",A,\" Ci\"and \"\\nThe activity after a continuous bombardment = \",A_C,\" Ci\"and \"\\nThe activity after 8hours = \",Activity,\" Ci\")\n", "\n", "\n", "## Result\n", "## The maximum activity of Na-24 = 2.344 Ci\n", "## The activity after a continuous bombardment = 0.7324 Ci\n", "## The activity after 8hours = 0.50360 Ci" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The maximum activity of Na-24 = 2.34 \n", "The activity after a continuous bombardment = 0.73 \n", "The activity after 8hours = 0.50 Ci \n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex16-pg94" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa2.16 : : Page 94 (2011)\n", "#find The energy of beta rays emitted per gram of tissue\n", "import math\n", "A_0 = 3.7e+07; ## Initial activity, disintegrations per sec\n", "T = 12.6; ## Half life of I-130, hours\n", "t = 24*3600; ## time for dose absorbed calculation,sec\n", "E = 0.29*1.6e-06; ## Average energy of beta rays, ergs\n", "m = 2; ## Mass of iodine thyroid tissue, gm\n", "l = 0.693/(T*3600); ## Disintegration constant, sec^-1\n", "N_0 = A_0/l; ## Initial number of atoms\n", "N = N_0*(1-math.e**(-l*t)); ## Number of average atoms disintegrated\n", "E_A = N*E; ## Energy of beta rays emitted, ergs\n", "E_G = E_A/(2*97.00035); ## Energy of beta rays emitted per gram of tissue, REP \n", "print'%s %.2f %s'%(\"\\nThe energy of beta rays emitted per gram of tissue = \",E_G,\" REP\");\n", "\n", "## Result\n", "## The energy of beta rays emitted per gram of tissue = 4245.0 REP " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The energy of beta rays emitted per gram of tissue = 4245.02 REP\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex18-pg95" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa2.18 : : Page 95 (2011)\n", "#find The activity of Au-198 and The maximum amount of Au-198 produced\n", "import math\n", "N_0 = 6.022137e+023; ## Avagadro number\n", "d = 0.02; ## Thickness of the foil, cm\n", "R = 19.3; ## Density of Au,g/cc\n", "N_1 = d*R/197.*N_0; ## Initial number of Au-197 nuclei per unit area of foil,cm^-2\n", "T_H = 2.7*24.*3600.; ## Half life of Au-198,sec\n", "L = math.log(2)/T_H; ## Decay constant for Au-198,sec^-1\n", "I = 10**12; ## Intensity of neutron beam,neutrons/cm^2/sec\n", "S = 97.8e-024; ## Cross section for reaction,cm^-2\n", "t = 5*60.; ## Reaction time,s\n", "A = S*I*N_1*(1-math.e**(-L*t)); ## Activity of Au-198,cm^-2sec^-1\n", "N_2 = S*I*N_1/L; ## The maximum amount of Au-198 produced,cm^-2\n", "print'%s %.2e %s %.2e %s '%(\"\\nThe activity of Au-198 = \",A,\" per Sq.cm per sec\"and \"\\nThe maximum amount of Au-198 produced = \",N_2,\" per Sq.cm\");\n", "\n", "## Result\n", "## The activity of Au-198 = 1.028e+008 per Sq.cm per sec\n", "## The maximum amount of Au-198 produced = 3.88e+016 per Sq.cm " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The activity of Au-198 = 1.03e+08 \n", "The maximum amount of Au-198 produced = 3.88e+16 per Sq.cm \n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex19-pg95" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa2.19 : : Page 95 (2011)\n", "#find The power released by the gm molecule of Pu-238 and The time in which power reduces to 1/8 time of its initial value\n", "import math\n", "N_0 = 6.022137e+023; ## Avagadro number \n", "T_P = 90.*365.*24.*3600.; ## Half life of Pu-238,s\n", "L_P = 0.693/T_P ; ## Decay constant of Pu-238,s^-1\n", "E = 5.5; ## Energy of alpha particle, MeV\n", "P =E*L_P*N_0; ## Power released by the gm molecule of Pu-238,MeV/s\n", "t = math.log(8)/(L_P*365.*24.*3600.); ## Time in which power reduces to 1/8 time of its initial value \n", "print'%s %.2e %s %.1f %s '%(\"\\nThe power released by the gm molecule of Pu-238 = \",P,\" MeV/s\"and \"\\nThe time in which power reduces to 1/8 time of its initial value = \",t,\" yrs\")\n", "\n", "## Result\n", "## The power released by the gm molecule of Pu-238 = 8.09e+014 MeV/s \n", "## The time in which power reduces to 1/8 time of its initial value = 270 yrs " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The power released by the gm molecule of Pu-238 = 8.09e+14 \n", "The time in which power reduces to 1/8 time of its initial value = 270.1 yrs \n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex20-pg96" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa2.20 : : Page 96 (2011)\n", "#find The required time for decay of daughter nucleus and The number of nuclei of daughter isotope\n", "import math\n", "N_1 = 10**20; ## Number of nuclei of parent isotopes\n", "T_P = 10**4; ## Half life of parent nucleus,years\n", "T_D = 20.; ## Half life of daughter nucleus,years\n", "T = 10**4; ## Given time,years\n", "L_P = 0.693/T_P ; ## Decay constant of parent nucleus,years^-1\n", "L_D = 0.693/T_D ; ## Decay constant of daughter nucleus,years^-1\n", "t_0 = math.log(0.03)/(L_P-L_D); ## Required time for decay of daughter nucleus,years\n", "N = L_P/L_D*(math.e**(-L_P*T)-math.e**(-L_D*T))*N_1; ## Number of nuclei of daughter isotope\n", "print'%s %.2f %s %.0e %s'%(\"\\nThe required time for decay of daughter nucleus =\",t_0,\" yr\"and \" \\nThe number of nuclei of daughter isotope = \",N,\" \");\n", "\n", "## Result\n", "## The required time for decay of daughter nucleus = 101 yr \n", "## The number of nuclei of daughter isotope = 1e+017 " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The required time for decay of daughter nucleus = 101.40 \n", "The number of nuclei of daughter isotope = 1e+17 \n" ] } ], "prompt_number": 17 } ], "metadata": {} } ] }