{ "metadata": { "name": "", "signature": "sha256:f0f3883962d3ff2205f0aa7b119a41b1115305734d5340cd468bd7addc3f1d3f" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter18-Elementry Particles" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg770" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa18.1 : : Page-770 (2011)\n", "#find The root mean square radius of charge distribution\n", "import math \n", "m_sqr = 0.71; ## For proton, (GeV/c-square)^2\n", "R_rms = math.sqrt(12.)/(math.sqrt(m_sqr)*5.1); ## Root mean square radius, femto metre\n", "print'%s %.2f %s'%(\"\\nThe root mean square radius of charge distribution: \",R_rms,\" fermi\");\n", "\n", "## Result\n", "## The root mean square radius of charge distribution: 0.81 fermi " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The root mean square radius of charge distribution: 0.81 fermi\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg763" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Ex18.3 : : Page-763 (2011)\n", "#find all reactions\n", "import math\n", "import numpy\n", "p = numpy.zeros((1,2)); ## proton\n", "pi_minus = numpy.zeros((1,2)); ##pi minus meson\n", "pi_plus = numpy.zeros((1,2)); ## pi plus meson\n", "n = numpy.zeros((1,2)); ## neutron\n", "lamda_0 = numpy.zeros((1,2)); ## lamda hyperon\n", "K_0 = numpy.zeros((1,2)); ## K zero (Kaons)\n", "K_plus =numpy.zeros((1,2)); ## K plus (Kaons)\n", "sigma_plus = numpy.zeros((1,2)); ## hyperon \n", "sigma_minus = numpy.zeros((1,2)) ## hyperon\n", "ksi_minus = numpy.zeros((1,2)); ## hyperon\n", "## Allocate the value of Isospins (T and T3)\n", "p[0,0] = 1/2;\n", "p[0,1] = 1/2;\n", "pi_minus[0,0] = 1;\n", "pi_minus[0,1] = -1;\n", "pi_plus[0,0] = 1;\n", "pi_plus[0,1] = +1;\n", "n[0,0] = 1/2;\n", "n[0,1] = -1/2;\n", "lambda_0=numpy.zeros((1,2));\n", "lambda_0[0,0] = 0;\n", "lambda_0[0,1] = 0;\n", "K_0[0,0] = pi_minus[0,0]+p[0,0];\n", "K_0[0,1] = pi_minus[0,1]+p[0,1] ;\n", "K_plus[0,0] = p[0,0]+p[0,0]-lambda_0[0,0]-p[0,0];\n", "K_plus[0,1] = p[0,1]+p[0,1]-lambda_0[0,1]-p[0,1] ;\n", "sigma_plus[0,0] = pi_plus[0,0]+p[0,0]-K_plus[0,0];\n", "sigma_plus[0,1] = pi_plus[0,1]+p[0,1]-K_plus[0,1];\n", "sigma_minus[0,0] = pi_minus[0,0]+p[0,0]-K_plus[0,0];\n", "sigma_minus[0,1] = pi_minus[0,1]+p[0,1]-K_plus[0,1];\n", "ksi_minus[0,0] = pi_plus[0,0]+n[0,0]-K_plus[0,0]-K_plus[0,0];\n", "ksi_minus[0,1] = pi_plus[0,1]+n[0,1]-K_plus[0,1]-K_plus[0,1];\n", "print'%s'%(\"\\n Reaction I \\n pi_minus + p ......> lambda_0 + K_0\");\n", "print'%s %.2f %s'%(\"\\n The value of T for K_0 is : %3.1f \",K_0[0,0],\"\");\n", "print'%s %.2f %s'%(\"\\n The value of T3 for K_0 is : %3.1f \",K_0[0,1],\"\");\n", "print(\"\\n Reaction II \\n pi_plus + p -> lambda_0 + K_plus\");\n", "print'%s %.2f %s'%(\"\\n The value of T for K_plus is : %3.1f \",K_plus[0,0],\"\");\n", "print'%s %.2f %s'%(\"\\n The value of T3 for K_plus is : %3.1f \",K_plus[0,1],\"\");\n", "print(\"\\n Reaction III \\n pi_plus + n -> lambda_0 + K_plus\");\n", "print'%s %.2f %s'%(\"\\n The value of T for K_plus is : %3.1f \",K_plus[0,0],\"\");\n", "print'%s %.2f %s'%(\"\\n The value of T3 for K_plus is : %3.1f \",K_plus[0,1],\"\");\n", "print(\"\\n Reaction VI \\n pi_minus + p -> sigma_minus + K_plus\");\n", "print'%s %.2f %s'%(\"\\n The value of T for sigma_minus is : %3.1f \",sigma_minus[0,0],\"\");\n", "print'%s %.2f %s'%(\"\\n The value of T3 for sigma_minus is : %3.1f \",sigma_minus[0,1],\"\");\n", "print(\"\\n Reaction V \\n pi_plus + p -> sigma_plus + K_plus\");\n", "print'%s %.2f %s'%(\"\\n The value of T for sigma_plus is : %3.1f \",sigma_plus[0,0],\"\");\n", "print'%s %.2f %s'%(\"\\n The value of T3 for sigma_plus is : %3.1f \",sigma_plus[0,1],\"\");\n", "print(\"\\n Reaction VI \\n pi_plus + n -> ksi_minus + K_plus + K_plus\");\n", "print'%s %.2f %s'%(\"\\n The value of T for Ksi_minus is : %3.1f \",ksi_minus[0,0],\"\");\n", "print'%s %.2f %s'%(\"\\n The value of T3 for Ksi_minus is : %3.1f \",ksi_minus[0,1],\"\");\n", "\n", "## Result\n", "## \n", "## Reaction I \n", "## pi_minus + p -> lambda_0 + K_0\n", "## The value of T for K_0 is : 1.5 \n", "## The value of T3 for K_0 is : -0.5 \n", "## Reaction II \n", "## pi_plus + p -> lambda_0 + K_plus\n", "## The value of T for K_plus is : 0.5 \n", "## The value of T3 for K_plus is : 0.5 \n", "## Reaction III \n", "## pi_plus + n -> lambda_0 + K_plus\n", "## The value of T for K_plus is : 0.5 \n", "## The value of T3 for K_plus is : 0.5 \n", "## Reaction VI \n", " ## pi_minus + p -> sigma_minus + K_plus\n", "## The value of T for sigma_minus is : 1.0 \n", "## The value of T3 for sigma_minus is : -1.0 \n", "## Reaction V \n", "## pi_plus + p -> sigma_plus + K_plus\n", "## The value of T for sigma_plus is : 1.0 \n", "## The value of T3 for sigma_plus is : 1.0 \n", "## Reaction VI \n", " ## pi_plus + n -> ksi_minus + K_plus + K_plus\n", "## The value of T for Ksi_minus is : 0.5 \n", "## The value of T3 for Ksi_minus is : -0.5 \n", "print(\"ans is slighlty different from book due to rounding off error\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " Reaction I \n", " pi_minus + p ......> lambda_0 + K_0\n", "\n", " The value of T for K_0 is : %3.1f 1.00 \n", "\n", " The value of T3 for K_0 is : %3.1f -1.00 \n", "\n", " Reaction II \n", " pi_plus + p -> lambda_0 + K_plus\n", "\n", " The value of T for K_plus is : %3.1f 0.00 \n", "\n", " The value of T3 for K_plus is : %3.1f 0.00 \n", "\n", " Reaction III \n", " pi_plus + n -> lambda_0 + K_plus\n", "\n", " The value of T for K_plus is : %3.1f 0.00 \n", "\n", " The value of T3 for K_plus is : %3.1f 0.00 \n", "\n", " Reaction VI \n", " pi_minus + p -> sigma_minus + K_plus\n", "\n", " The value of T for sigma_minus is : %3.1f 1.00 \n", "\n", " The value of T3 for sigma_minus is : %3.1f -1.00 \n", "\n", " Reaction V \n", " pi_plus + p -> sigma_plus + K_plus\n", "\n", " The value of T for sigma_plus is : %3.1f 1.00 \n", "\n", " The value of T3 for sigma_plus is : %3.1f 1.00 \n", "\n", " Reaction VI \n", " pi_plus + n -> ksi_minus + K_plus + K_plus\n", "\n", " The value of T for Ksi_minus is : %3.1f 1.00 \n", "\n", " The value of T3 for Ksi_minus is : %3.1f 0.00 \n", "ans is slighlty different from book due to rounding off error\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex9-pg766" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Ex18.9 : : Page-766 (2011)\n", "import math\n", "#find The lifetime of sigma particle and The isospin of sigma particle \n", "h_cross = 6.62e-022; ## Redueced planck's constant, MeV sec\n", "p_width = 0.88*35; ## Partial width of the decay, MeV \n", "tau = h_cross/p_width; ## Life time of sigma, sec \n", "T_pi = 1.; ## Isospin of pi plus particle \n", "T_lambda = 0.; ## Isospin of lambda zero particle \n", "T_sigma = T_pi+T_lambda; ## Isospin of sigma particle \n", "print'%s %.2e %s'%(\"\\nThe lifetime of sigma particle = \",tau,\" s\")\n", "print(\"The reaction is strong\")\n", "print\"%s %.2f %s\"%(\"The isospin of sigma particle is : \",T_sigma,\"\");\n", "\n", "## Result\n", "## The lifetime of sigma particle = 2.15e-023 s\n", "## The reaction is strong\n", "## The isospin of sigma particle is : 1 " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The lifetime of sigma particle = 2.15e-23 s\n", "The reaction is strong\n", "The isospin of sigma particle is : 1.00 \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex10-pg767" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Exa18.10 : : Page-767 (2011)\n", "#find The mean life for tau plus\n", "import math\n", "m_mew = 106.; ## Mass of mew lepton, mega electron volts per square c\n", "m_tau = 1784.; ## Mass of tau lepton, mega electron volts per square c\n", "tau_mew = 2.2e-06; ## Mean life of mew lepton, sec\n", "R = 16/100.; ## Branching factor\n", "tau_plus = R*(m_mew/m_tau)**5*tau_mew; ## Mean life for tau plus, sec\n", "print'%s %.2e %s'%(\"\\nThe mean life for tau plus : \",tau_plus,\" sec\");\n", "\n", "## Result\n", "## The mean life for tau plus : 2.6e-013 sec " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The mean life for tau plus : 2.61e-13 sec\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex13-pg768" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Exa18.13 : : Page-768(2011)\n", "#find The possible charge states \n", "def symbol(val):\n", " global s\n", " if val == 2 :\n", " s = '++';\n", " elif val == 1:\n", " s = '+';\n", " elif val == 0:\n", " s = '0';\n", " elif val == -1:\n", " s = '-';\n", " return s\n", "\n", "B = 1; # Baryon number\n", "S1 = 0; # Strangeness quantum number\n", "Q = numpy.zeros((1,4)) # Charge\n", "I3 = 3/2.; \n", "print (\"\\nThe possible charge states are\");\n", "for i in range(0,4): \n", " Q = I3+(B+S1)/2.;\n", " symb = symbol(Q);\n", " print symb\n", " I3 = I3 - 1;\n", "\n", "print (\" respectively\");\n", "\n", "# Result\n", "# The possible charge states are ++ + 0 - respectively " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The possible charge states are\n", "++\n", "+\n", "0\n", "-\n", " respectively\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex15-pg768" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa18.15 : : Page-768 (2011)\n", "#find The branching ratio for a resonanc\n", "import math\n", "I_1 = 3/2.; ## Isospin for delta(1232)\n", "I_2 = 1/2.; ## Isospin for delta 0\n", "delta_ratio = math.sqrt((2./3.)**2)/math.sqrt((1./3.)**2); ## Branching ratio\n", "print'%s %.2f %s'%(\"\\nThe branching ratio for a resonance with I = 1/2 is \", delta_ratio,\"\");\n", "\n", "## Result\n", "## The branching ratio for a resonance with I = 1/2 is 2 " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The branching ratio for a resonance with I = 1/2 is 2.00 \n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex16-pg768" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa18.16 : : Page-768 (2011)\n", "#find The cross section ratio\n", "import math\n", "phi = 45*math.pi/180; ## Phase difference\n", "Cross_sec_ratio = 1/4.*(5.+4.*math.cos(phi))/(1-math.cos(phi)); ## Cross section ratio\n", "print'%s %.2f %s'%(\"\\nThe cross section ratio : \", Cross_sec_ratio,\"\");\n", "\n", "## Result\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The cross section ratio : 6.68 \n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex18-pg770" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa18.18 : : Page-770 (2011)\n", "#find The root mean square radius of charge distribution\n", "import math \n", "m_sqr = 0.71; ## For proton, (GeV/c-square)^2\n", "R_rms = math.sqrt(12.)/(math.sqrt(m_sqr)*5.1); ## Root mean square radius, femto metre\n", "print'%s %.2f %s'%(\"\\nThe root mean square radius of charge distribution: \",R_rms,\" fermi\");\n", "\n", "## Result\n", "## The root mean square radius of charge distribution: 0.81 fermi math" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The root mean square radius of charge distribution: 0.81 fermi\n" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }