{ "metadata": { "name": "", "signature": "sha256:7bae67184aff3b5018323a5a7fd8d73277287467e3722f9114aa02be5e49dd72" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter12-Neutrons" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exx1-pg573" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa12.1 : : Page-573 (2011)\n", "#calculate activity for Cu-63 and disintegrations\n", "import math \n", "N_0 = 6.23e+23; ## Avogadro's number, per mole\n", "m = 0.1; ## Mass of copper foil, Kg\n", "phi = 10**12; ## Neutron flux density, per square centimetre sec\n", "a_63 = 0.691; ## Abundance of Cu-63\n", "a_65 = 0.309; ## Abundance of Cu-65\n", "W_m = 63.57; ## Molecular weight, gram\n", "sigma_63 = 4.5e-24; ## Activation cross section for Cu-63, square centi metre\n", "sigma_65 = 2.3e-24; ## Activation cross section for Cu-65, square centi metre\n", "A_63 = phi*sigma_63*m*a_63/W_m*N_0; ## Activity for Cu-63, disintegrations per sec\n", "A_65 = phi*sigma_65*m*a_65/W_m*N_0; ## Activity for Cu-65, disintegrations per sec\n", "print'%s %.2e %s %.2e %s'%(\"\\nThe activity for Cu-63 is = \",A_63,\" disintegrations per sec\" and \"\\nThe activity for Cu-65 is = \",A_65,\" disintegrations per sec\");\n", "\n", "## Result\n", "## The activity for Cu-63 is = 3.047e+009 disintegrations per sec \n", "## The activity for Cu-65 is = 6.97e+008 disintegrations per sec " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The activity for Cu-63 is = 3.05e+09 \n", "The activity for Cu-65 is = 6.97e+08 disintegrations per sec\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg573" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa12.2 : : Page-573 (2011)\n", "import math \n", "#calculate enegy loss \n", "A_Be = 9.; ## Mass number of beryllium\n", "A_U = 238.; ## Mass number of uranium\n", "E_los_Be = (1-((A_Be-1)**2/(A_Be+1)**2))*100.; ## Energy loss for beryllium\n", "E_los_U = round((1-((A_U-1)**2/(A_U+1)**2))*100.); ## Energy loss for uranium\n", "print'%s %.2f %s %.2f %s '%(\"\\nThe energy loss for beryllium is = \",E_los_Be,\" percent\"and \" \\nThe energy loss for uranium is = \",E_los_U,\" percent\");\n", "\n", "## Check for greater energy loss !!!!\n", "if E_los_Be >= E_los_U :\n", " print(\"\\nThe energy loss is greater for beryllium\");\n", "else:\n", " print(\"\\nThe energy loss is greater for uranium\");\n", "\n", "\n", "## Result\n", "## The energy loss for beryllium is = 36 percent \n", "## The energy loss for uranium is = 2 percent\n", "## The energy loss is greater for beryllium \n", " " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The energy loss for beryllium is = 36.00 \n", "The energy loss for uranium is = 2.00 percent \n", "\n", "The energy loss is greater for beryllium\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg574" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa12.3 : : Page-574 (2011)\n", "#calculate energy loss of neutron\n", "import math \n", "A = 12.; ## Mass number of Carbon\n", "alpha = (A-1)**2/(A+1)**2; ## Scattering coefficient\n", "E_loss = 1/2.*(1-alpha)*100.; ## Energy loss of neutron\n", "print'%s %.2f %s'%(\"\\nThe energy loss of neutron = \",E_loss,\" percent\")\n", "\n", "## Result\n", "## The energy loss of neutron = 14.201 percent \n", " " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The energy loss of neutron = 14.20 percent\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg574" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa12.4 : : Page-574 (2011)\n", "#calculate number of collisions of neutrons \n", "import math \n", "zeta = 0.209; ## Moderated assembly\n", "E_change = 100./1.; ## Change in energy of the neutron\n", "E_thermal = 0.025; ## Thermal energy of the neutron, electron volts\n", "E_n = 2*10**6; ## Energy of the neutron, electron volts\n", "n = 1/zeta*math.log(E_change); ## Number of collisions of neutrons to loss 99 percent of their energies \n", "n_thermal = 1/zeta*math.log(E_n/E_thermal); ## Number of collisions of neutrons to reach thermal energies\n", "print'%s %.2f %s %.2f %s'%(\"\\nThe number of collisions of neutrons to loss 99 percent of their energies = \",n,\" \\nThe number of collisions of neutrons to reach thermal energies = \",n_thermal,\"\")\n", "\n", "## Result\n", "## The number of collisions of neutrons to loss 99 percent of their energies = 22 \n", "## The number of collisions of neutrons to reach thermal energies = 87 \n", " " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The number of collisions of neutrons to loss 99 percent of their energies = 22.03 \n", "The number of collisions of neutrons to reach thermal energies = 87.07 \n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg574" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa12.5 : : Page-574 (2011)\n", "#calculate average distance travelled by the neutron\n", "import math\n", "import scipy\n", "from scipy import integrate\n", "L = 1.; ## For simplicity assume thermal diffusion length to be unity, unit\n", "def fun(x):\n", " y=x*math.exp(-x/L)\n", " return y\n", "x_b = scipy.integrate.quad(fun, 0, 100); ## Average distance travelled by the neutron, unit\n", "x_b1=x_b[0]\n", "def fun2(x): \n", " y1=x**2*math.exp(-x/L)\n", " return y1\n", "X=scipy.integrate.quad(fun2, 0, 100)\n", "x_rms = math.sqrt(X[0]); ## Root mean square of the distance trvelled by the neutron, unit\n", "print'%s %.2f %s'%(\"\\nThe average distance travelled by the neutron = \", x_b1,\"*L\");\n", "print'%s %.2f %s %.2f %s '%(\"\\nThe root mean square distance travelled by the neutron = \",x_rms,\"\"and \"\",x_rms,\"x_bar\")\n", "\n", "## Result\n", "## The average distance travelled by the neutron = 1*L\n", "## The root mean square distance travelled by the neutron = 1.414L = 1.414x_bar \n", " " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The average distance travelled by the neutron = 1.00 *L\n", "\n", "The root mean square distance travelled by the neutron = 1.41 1.41 x_bar \n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg574" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa12.6 : : Page-574 (2011)\n", "#calculate neutron flux through water \n", "import math\n", "Q = 5e+08; ## Rate at which neutrons produce, neutrons per sec\n", "r = 20.; ## Distance from the source, centi metre\n", "## For water\n", "lambda_wtr = 0.45; ## Transport mean free path, centi metre\n", "L_wtr = 2.73; ## Thermal diffusion length, centi metre\n", "phi_wtr = 3*Q/(4.*math.pi*lambda_wtr*r)*math.exp(-r/L_wtr); ## Neutron flux for water, neutrons per square centimetre per sec\n", "## For heavy water\n", "lambda_h_wtr = 2.40; ## Transport mean free path, centi metre\n", "L_h_wtr = 171.; ## Thermal diffusion length, centi metre\n", "phi_h_wtr = 3*Q/(4.*math.pi*lambda_h_wtr*r)*math.exp(-r/L_h_wtr); ## Neutron flux for heavy water, neutrons per square centimetre per sec\n", "print'%s %.2e %s %.2e %s '%(\"\\nThe neutron flux through water = \",phi_wtr,\" neutrons per square cm per sec\"and \"\\nThe neutron flux through heavy water = \",phi_h_wtr,\" neutrons per square cm per sec\")\n", "\n", "## Result\n", "## The neutron flux through water = 8.730e+003 neutrons per square cm per sec \n", "## The neutron flux through heavy water = 2.212e+006 neutrons per square cm per sec \n", " " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The neutron flux through water = 8.73e+03 \n", "The neutron flux through heavy water = 2.21e+06 neutrons per square cm per sec \n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg575" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa12.7 : : Page-575 (2011)\n", "#calculate neutron flux and diffusion length\n", "import math\n", "k = 1.38e-23; ## Boltzmann constant, joules per kelvin\n", "T = 323.; ## Temperature, kelvin\n", "E = (k*T)/1.6e-19; ## Thermal energy, joules\n", "sigma_0 = 13.2e-28; ## Cross section, square metre\n", "E_0 = 0.025; ## Energy of the neutron, electron volts\n", "sigma_a = sigma_0*math.sqrt(E_0/E); ## Absorption cross section, square metre\n", "t_half = 2.25; ## Half life, hours\n", "D= 0.69/t_half; ## Decay constant, per hour\n", "N_0 = 6.023e+026; ## Avogadro's number, per \n", "m_Mn = 55.; ## Mass number of mangnese\n", "w = 0.1e-03; ## Weight of mangnese foil, Kg\n", "A = 200.; ## Activity, disintegrations per sec\n", "N = N_0*w/m_Mn; ## Number of mangnese nuclei in the foil\n", "x1 = 1.5; ## Base, metre\n", "x2 = 2.0; ## Height, metre\n", "phi = A/(N*sigma_a*0.416); ## Neutron flux, neutrons per square metre per sec\n", "phi1 = 1.; ## For simplicity assume initial neutron flux to be unity, neutrons/Sq.m-sec\n", "phi2 = 1/2.*phi1; ## Given neutron flux, neutrons/Sq.m-sec\n", "L1 = 1/math.log(phi1/phi2)/(x2-x1); ## Thermal diffusion length for given neutron flux, m\n", "L = math.sqrt(1./((1./L1)**2+(math.pi/x1)**2+(math.pi/x2)**2)); ## Diffusion length, metre\n", "print'%s %.2e %s %.2f %s '%(\"\\nThe neutron flux = \",phi,\" neutrons per square metre per sec\"and \" \\nThe diffusion length = \",L,\" metre\");\n", "\n", "## Result\n", "## The neutron flux = 3.51e+008 neutrons per square metre per sec \n", "## The diffusion length = 0.38 metre\n", "## Note: the difussion length is solved wrongly in the testbook\n", " " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The neutron flux = 3.51e+08 \n", "The diffusion length = 0.38 metre \n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8-pg575" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa12.8 : : Page-575(2011)\n", "#find diffusion length for thermal neutron\n", "import math\n", "N_0 = 6.023e+026; ## Avogadro's number, per mole\n", "rho = 1.62e+03; ## Density, kg per cubic metre\n", "sigma_a = 3.2e-31; ## Absorption cross section, square metre\n", "sigma_s = 4.8e-28; ## Scattered cross section, square metre\n", "A = 12.; ## Mass number\n", "lambda_a = A/(N_0*rho*sigma_a); ## Absorption mean free path, metre\n", "lambda_tr = A/(N_0*rho*sigma_s*(1.-2./(3.*A))); ## Transport mean free path, metre\n", "L = math.sqrt(lambda_a*lambda_tr/3.); ## Diffusion length for thermal neutron\n", "print'%s %.2f %s'%(\"\\nThe diffusion length for thermal neutron = \",L,\" metre \")\n", "\n", "## Result\n", "## The diffusion length for thermal neutron = 0.590 metre \n", " " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The diffusion length for thermal neutron = 0.59 metre \n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex9-pg575" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa12.9 : : Page-575 (2011)\n", "#calculate graphite and neutron age and slowing down length and same as berylliums\n", "import math\n", "E_0 = 2e+06; ## Average energy of the neutron, electron volts\n", "E = 0.025; ## Thermal energy of the neutron, electron volts\n", "## For graphite\n", "A = 12. ## Mass number\n", "sigma_g = 33.5; ## The value of sigma for graphite\n", "tau_0 = 1./(6.*sigma_g**2)*(A+2./3.)/(1.-2./(3.*A))*math.log(E_0/E); ## Age of neutron for graphite, Sq.m\n", "L_f = math.sqrt(tau_0); ## Slowing down length of neutron through graphite, m\n", "print'%s %.2f %s'%(\"\\nFor Graphite, A = \", A,\"\");\n", "print'%s %.2f %s'%(\"\\nNeutron age = \",tau_0*1e+004,\" Sq.cm\");\n", "print'%s %.2f %s'%(\"\\nSlowing down length =\",L_f,\" m\");\n", "## For beryllium\n", "A = 9. ## Mass number\n", "sigma_b = 57.; ## The value of sigma for beryllium\n", "tau_0 = 1/(6.*sigma_b**2)*(A+2./3.)/(1.-2./(3.*A))*math.log(E_0/E); ## Age of neutron for beryllium, Sq.m\n", "L_f = math.sqrt(tau_0); ## Slowing down length of neutron through graphite, m\n", "print'%s %.2f %s'%(\"\\n\\nFor Beryllium, A = \", A,\"\");\n", "print'%s %.2f %s'%(\"\\nNeutron age = \",tau_0*1e+004,\" Sq.cm\");\n", "print'%s %.2e %s'%(\"\\nSlowing down length = \",L_f,\" m\");\n", "\n", "## Result\n", "## For Graphite, A = 12\n", "## Neutron age = 362 Sq.cm\n", "## Slowing down length = 0.190 m\n", "\n", "## For Beryllium, A = 9\n", "## Neutron age = 97 Sq.cm\n", "## Slowing down length = 9.9e-002 m " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "For Graphite, A = 12.00 \n", "\n", "Neutron age = 362.46 Sq.cm\n", "\n", "Slowing down length = 0.19 m\n", "\n", "\n", "For Beryllium, A = 9.00 \n", "\n", "Neutron age = 97.46 Sq.cm\n", "\n", "Slowing down length = 9.87e-02 m\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex10-pg576" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa12.10 : : Page-576 (2011)\n", "#find enegy of the neutrons\n", "import math\n", "theta = 3.5*math.pi/180.; ## Reflection angle, radian\n", "d = 2.3e-10; ## Lattice spacing, metre\n", "n = 1.; ## For first order\n", "h = 6.6256e-34; ## Planck's constant, joule sec\n", "m = 1.6748e-27; ## Mass of the neutron, Kg\n", "E = n**2*h**2/(8.*m*d**2*math.sin(theta)**2*1.6023e-19); ## Energy of the neutrons, electron volts\n", "print'%s %.2f %s'%(\"\\nThe energy of the neutrons = \",E,\" eV\");\n", "\n", "## Result\n", "## The energy of the neutrons = 1.04 eV \n", " " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The energy of the neutrons = 1.04 eV\n" ] } ], "prompt_number": 14 } ], "metadata": {} } ] }