{ "metadata": { "name": "", "signature": "sha256:9b22acc9bcbd27c33c9e62b557ecc66fc981e9c1775b58e8ee670ca880259cf2" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter11-Particle Accelerators" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg535" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa11.1 : : Page-535(2011) \n", "#calculate The optimum number of stages in the accelerator and the ripple voltage\n", "import math\n", "V_0 = 10**5; ## Accelerating voltage, volts\n", "C = 0.02e-006; ## Capacitance, farad\n", "I = 4*1e-003; ## Current, ampere\n", "f = 200.; ## Frequency, cycles per sec\n", "n = math.sqrt (V_0*f*C/I); ## Number of particles\n", "delta_V = I*n*(n+1.)/(4.*f*C);\n", "print'%s %.2f %s'%(\"\\nThe optimum number of stages in the accelerator = \", n,\"\");\n", "print'%s %.2f %s'%(\"\\nThe ripple voltage = \", delta_V/1e+003,\"kV\");\n", "\n", "## Result\n", "## The optimum number of stages in the accelerator = 10\n", "## The ripple voltage = 27.5 kV \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The optimum number of stages in the accelerator = 10.00 \n", "\n", "The ripple voltage = 27.50 kV\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg536" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa11.2 : : Page-536 (2011)\n", "#calculate The charging current and The rate of rise of electrode potential\n", "import math\n", "s = 15.; ## Speed, metre per sec\n", "w = 0.3; ## Width of the electrode, metre\n", "E = 3e+06; ## Breakdown strength, volts per metre\n", "eps = 8.85e-12; ## Absolute permitivity of free space, farad per metre\n", "C = 111e-12; ## Capacitance, farad\n", "i = round (2*eps*E*s*w*10**6); ## Current, micro ampere\n", "V = i/C*10**-12; ## Rate of rise of electrode potential, mega volts per sec\n", "print'%s %.2f %s %.2f %s '%(\"\\nThe charging current =\",i,\" micro-ampere\"and \" \\nThe rate of rise of electrode potential = \",V,\" MV/sec\");\n", "\n", "## Result\n", "## The charging current = 239 micro-ampere \n", "## The rate of rise of electrode potential = 2.15 MV/sec " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The charging current = 239.00 \n", "The rate of rise of electrode potential = 2.15 MV/sec \n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg536" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa11.3 : : Page-536 (2011)\n", "#calculate The length of the final drift tube and The kinetic energy of the injected protons\n", "import math\n", "import scipy\n", "from scipy import integrate\n", "\n", "f = 200.*10**6; ## Frequency of the accelerator, cycle per sec\n", "M = 1.6724e-27; ## Mass of the proton, Kg\n", "E = 45.3*1.6e-13; ## Accelerating energy, joule\n", "L_f = round (1./f*math.sqrt(2.*E/M)*100.); ## Length of the final drift tube, centi metre\n", "L_1 = 5.35*10**-2; ## Length of the first drift tube, metre\n", "K_E = (1./2.*M*L_1**2.*f**2.)/1.6e-13; ## Kinetic energy of the injected proton, MeV\n", "E_inc = E/1.6e-13-K_E; ## Increase in energy, MeV\n", "q = 1.6e-19; ## Charge of the proton, C\n", "V = 1.49e+06; ## Accelerating voltage, volts\n", "N = E_inc*1.6e-13/(q*V); ## Number of drift protons\n", "def fun(n):\n", " y=n**0.5\n", " return y\n", "\n", "l2=scipy.integrate.quad(fun,0,N)\n", "L = 1./f*math.sqrt(2.*q*V/M)*l2[0]; ## Total length of the accelerator, metre\n", "print'%s %.2f %s %.2f %s %.2f %s '%(\"\\nThe length of the final drift tube = \",L_f,\" cm\"and\"\\nThe kinetic energy of the injected protons = \",K_E,\" MeV\"and\"\\nThe total length of the accelerator = \",L,\" metre\");\n", "\n", "## Result\n", "## The length of the final drift tube = 47 cm\n", "## The kinetic energy of the injected protons = 0.60 MeV\n", "## The total length of the accelerator = 9.2 metre " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The length of the final drift tube = 47.00 \n", "The kinetic energy of the injected protons = 0.60 \n", "The total length of the accelerator = 9.25 metre \n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg536" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa11.5 : : Page-536 (2011)\n", "#find energy of the emergine deutron and frequency of the dee voltage\n", "import math\n", "B = 1.4; ## Magnetic field, tesla\n", "R = 88e-002; ## Radius of the orbit, metre\n", "q = 1.6023e-019; ## Charge of the deutron, C\n", "M_d = 2.014102*1.66e-27; ## Mass of the deutron, Kg\n", "M_He = 4.002603*1.66e-27; ## Mass of the He ion, Kg\n", "E = B**2*R**2*q**2/(2*M_d*1.6e-13); ## Energy og the emerging deutron, mega electron volts\n", "f = B*q/(2.*math.pi*M_d)*10**-6; ## Frequency of the deutron voltage, mega cycles per sec\n", "B_He = 2*math.pi*M_He*f*10**6/(2*q); ## Magnetic field required for He(++) ions, weber per square metre\n", "B_change = B-B_He; ## Change in magnetic field, tesla\n", "print'%s %.2f %s %.2f %s %.2f %s '%(\"\\nThe energy of the emerging deutron = \",E,\" MeV\" and \"\\nThe frequency of the dee voltage = \",f,\"MHz\" and\"\\nThe change in magnetic field = \",B_change,\" tesla\");\n", "\n", "## Result\n", "## The energy of the emerging deutron = 36.4 MeV\n", "## The frequency of the dee voltage = 10.68 MHz\n", "## The change in magnetic field = 0.01 tesla " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The energy of the emerging deutron = 36.42 \n", "The frequency of the dee voltage = 10.68 \n", "The change in magnetic field = 0.01 tesla \n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg537" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa11.6: : Page-537 (2011)\n", "#calculate effective reduction in magnetic field and charge in orbit radius\n", "import math\n", "K_E = 7.5*1.6023e-13; ## Kinetic energy, joule \n", "r = 0.51; ## Radius of the proton's orbit, metre\n", "E = 5*10**6; ## Electric field, volts per metre\n", "m = 1.67e-27; ## Mass of the proton, Kg\n", "q = 1.6023e-19; ## Charge of the proton, C\n", "v = math.sqrt(2.*K_E/m); ## Velocity of the proton, metre per sec\n", "B_red = E/v; ## The effective reduction in magnetic field, tesla\n", "B = m*v/(q*r); ## Total magnetic field produced, tesla\n", "r_change = r*B_red/B; ## The change in orbit radius, metre\n", "print'%s %.2f %s %.2f %s '%(\"\\nThe effective reduction in magnetic field = \",B_red,\" tesla \"and \"\\nThe change in orbit radius = \",r_change,\" metre \");\n", "\n", "## Result\n", "## The effective reduction in magnetic field = 0.132 tesla \n", "## The change in orbit radius = 0.087 metre " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The effective reduction in magnetic field = 0.13 \n", "The change in orbit radius = 0.09 metre \n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg537" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa11.7 : : Page-537 (2011)\n", "#calculate enegy of the elctron and average enegy gained per revolution \n", "import math\n", "B = 0.4; ## Magnetic field, tesla\n", "e = 1.6203e-19; ## Charge of an electron, C\n", "R = 30*2.54e-02; ## Radius, metre\n", "c = 3e+08; ## Capacitance, farad\n", "E = B*e*R*c/1.6e-13; ## The energy of the electron, mega electron volts\n", "f = 50.; ## Frequency, cycles per sec\n", "N = c/(4*2*math.pi*f*R); ## Total number of revolutions\n", "Avg_E_per_rev = E*1e+006/N; ## Average energy gained per revolution, electron volt\n", "print'%s %.2f %s %.2f %s '%(\"\\nThe energy of the electron = \",E,\" MeV\"and \"\\nThe average energy gained per revolution = \",Avg_E_per_rev,\" eV\");\n", "\n", "## Result\n", "## The energy of the electron = 92.6 MeV\n", "## The average energy gained per revolution = 295.57 eV \n", "## Note: Wrong answer is given in the textbook \n", "## Average energy gained per revolution : 295.57 electron volts\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The energy of the electron = 92.60 \n", "The average energy gained per revolution = 295.57 eV \n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8-pg537" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa11.8 : : Page-537 (2011)\n", "#calculate peak current and average current and duty cycle\n", "import math\n", "R = 0.35; ## Orbit radius, metre\n", "N = 100e+06/480.; ## Total number of revolutions\n", "L = 2*math.pi*R*N; ## Distance traversed by the electron, metre\n", "t = 2e-06; ## Pulse duration, sec\n", "e = 1.6203e-19; ## Charge of an electron, C\n", "n = 3e+09; ## Number of electrons\n", "f = 180.; ## frequency, hertz\n", "I_p = n*e/t; ## Peak current, ampere\n", "I_avg = n*e*f; ## Average current, ampere \n", "tau = t*f; ## Duty cycle\n", "print'%s %.2e %s %.2e %s %.2e %s'%(\"\\nThe peak current = \",I_p,\" ampere\" and \"\\nThe average current = \",I_avg,\" ampere \"and \"\\nThe duty cycle =\",tau,\"\");\n", "\n", "## Result\n", "## The peak current = 2.4e-004 ampere \n", "## The average current = 8.75e-008 ampere \n", "## The duty cycle = 3.6e-004 \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The peak current = 2.43e-04 \n", "The average current = 8.75e-08 \n", "The duty cycle = 3.60e-04 \n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex9-pg538" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa11.9 : : Page-538 (2011)\n", "#calculate maximum frequncy of the dee voltage and kinetic energy of the deutron \n", "import math\n", "q = 1.6023e-19; ## Charge of an electron, C\n", "B_0 = 1.5; ## Magnetic field at the centre, tesla\n", "m_d = 2.014102*1.66e-27; ## Mass of the deutron, Kg\n", "f_max = B_0*q/(2*math.pi*m_d*10**6); ## Maximum frequency of the dee voltage, mega cycles per sec\n", "B_prime = 1.4310; ## Magnetic field at the periphery of the dee, tesla\n", "f_prime = 10**7; ## Frequency, cycles per sec\n", "c = 3e+08; ## Velocity of the light, metre per sec\n", "M = B_prime*q/(2*math.pi*f_prime*1.66e-27); ## Relativistic mass, u\n", "K_E = (M-m_d/1.66e-27)*931.5; ## Kinetic energy of the particle, mega electron volts\n", "print'%s %.2f %s %.2f %s '%(\"\\nThe maximum frequency of the dee voltage = \",f_max,\" MHz\"and \"\\nThe kinetic energy of the deuteron = \",K_E,\" MeV\");\n", " \n", "## Result\n", "## The maximum frequency of the dee voltage = 11.44 MHz\n", "## The kinetic energy of the deuteron = 171.6 MeV \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The maximum frequency of the dee voltage = 11.44 \n", "The kinetic energy of the deuteron = 171.62 MeV \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex10-pg538" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate frequency of the applied electric field and magnetic field intensity\n", "## Exa11.10 : : Page-538 (2011)\n", "import math\n", "e = 1.6023e-19; ## Charge of an electron, C\n", "E = 70*1.6e-13; ## Energy, electron volts\n", "R = 0.28; ## Radius of the orbit, metre\n", "c = 3e+08; ## Velocity of light, metre per sec\n", "B = E/(e*R*c); ## Magnetic field intensity, tesla\n", "f = e*B*c**2/(2*math.pi*E); ## Frequency, cycle per sec\n", "del_E = 88.5*(0.07)**4*10**3/(R); ## Energy radiated by an electron, electron volts\n", "print'%s %.2f %s %.2f %s %.2f %s '%(\"\\nThe frequency of the applied electric field = \",f,\" cycles per sec\" and\"\\nThe magnetic field intensity = \",B,\" tesla\"and \"\\nThe energy radiated by the electron =\",del_E,\" eV\");\n", "\n", "## Result\n", "## The frequency of the applied electric field = 1.705e+008 cycles per sec \n", "## The magnetic field intensity = 0.832 tesla\n", "## The energy radiated by the electron = 7.6 eV " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The frequency of the applied electric field = 170523153.31 \n", "The magnetic field intensity = 0.83 \n", "The energy radiated by the electron = 7.59 eV \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex11-pg538" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate kinetic energy of the accelerated nitrogen\n", "## Exa11.11 : : Page-538 (2011)\n", "import math\n", "E = 3.; ## Energy of proton synchrotron, giga electron volts\n", "m_0_c_sq = 0.938; ## Relativistic energy, mega electron volts\n", "P_p = math.sqrt(E**2-m_0_c_sq**2); ## Momentum of the proton, giga electron volts per c\n", "P_n = 6*P_p; ## Momentum of the N(14) ions, giga electron volts\n", "T_n = math.sqrt(P_n**2+(0.938*14.)**2)-0.938*14; ## Kinetic energy of the accelerated nitrogen ion\n", "print'%s %.2f %s'%(\"\\nThe kinetic energy of the accelerated nitrogen ion = \",T_n,\" MeV\");\n", "\n", "## Result\n", "## The kinetic energy of the accelerated nitrogen ion = 8.43 MeV \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The kinetic energy of the accelerated nitrogen ion = 8.43 MeV\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex12-pg539" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa11.12 : : Page-539 (2011)\n", "#calculate maximum magnetic flux density and maximum frequency of the accerlating voltage\n", "import math\n", "e = 1.6e-19; ## Charge of an electron, C\n", "R = 9.144; ## Radius, metre\n", "m_p = 1.67e-027; ## Mass of the proton, Kg\n", "E = 3.6*1.6e-13; ## Energy, joule\n", "L = 3.048; ## Length of the one synchrotron section, metre \n", "T = 3; ## Kinetic energy, giga electron volts\n", "c = 3e+08; ## Velocity of the light, metre per sec\n", "m_0_c_sq = 0.938; ## Relativistic energy, mega electron volts\n", "B = round (math.sqrt(2*m_p*E)/(R*e)*10**4); ## Maximum magnetic field density, web per square metre\n", "v = B*10**-4*e*R/m_p; ## Velocity of the proton, metre per sec\n", "f_c = v/(2*math.pi*R*10**6); ## Frequency of the circular orbit, mega cycles per sec\n", "f_0 = 2*math.pi*R*f_c*10**3/(2*math.pi*R+4*L); ## Reduced frequency, kilo cycles per sec\n", "B_m = 3.33*math.sqrt(T*(T+2*m_0_c_sq))/R; ## Relativistic field, web per square metre\n", "f_0 = c**2*e*R*B*1e-004/((2*math.pi*R+4*L)*(T+m_0_c_sq)*e*1e+015); ## Maximum frequency of the accelerating voltage, mega cycles per sec\n", "print'%s %.2f %s %.2f %s '%(\"\\nThe maximum magnetic flux density = \",B_m,\" weber/Sq.m\"and \"\\nThe maximum frequency of the accelerating voltage = \",f_0,\" MHz\");\n", " \n", "## Result\n", "## The maximum magnetic flux density = 1.393 weber/Sq.m\n", "## The maximum frequency of the accelerating voltage = 0.09 MHz\n", "## Answer is given wrongly in the textbook \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The maximum magnetic flux density = 1.39 \n", "The maximum frequency of the accelerating voltage = 0.09 MHz \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex13-pg539" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate energy of the proton\n", "## Exa11.13 : : Page-539 (2011)\n", "import math\n", "E_c = 30e+009; ## Energy of the proton accelerator, GeV\n", "m_0_c_sq = 0.938*10**6; ## Relativistic energy, GeV\n", "E_p = (4*E_c**2-2*m_0_c_sq**2)/(2*m_0_c_sq) ; ## Energy of the proton, GeV\n", "print'%s %.2f %s'%(\"\\nThe energy of the proton = \",E_p/1e+009,\" GeV\");\n", "print(\"wrong answer in the textbook\")\n", "## Result\n", "## The energy of the proton = 1.92e+006 GeV \n", "## Wrong answer given in the textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The energy of the proton = 1918976.54 GeV\n", "wrong answer in the textbook\n" ] } ], "prompt_number": 1 } ], "metadata": {} } ] }