{ "metadata": { "name": "", "signature": "sha256:3cf7334f303e62e9d7ee028942cc3f913423a0b853c51242dbc7d672a0097072" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter1-General properties of Atomic Nucleus" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg51" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Exa1.1 : : Page 51 (2011)\n", "#calculate distance of closet apporach\n", "Z = 79.; ## Atomic number of Gold \n", "z = 1.; ## Atomic number of Hydrogen\n", "e = 1.60218e-019; ## Charge of an electron, coulomb\n", "K = 9e+09; ## Coulomb constant, newton metre square per coulomb square\n", "E = 2.*1.60218e-013; ## Energy of the proton, joule\n", "b = Z*z*e**2.*K/E; ## Distance of closest approach, metre\n", "print'%s %.5e %s'%(\"Distance of closest approach :\",b,\" metre\");\n", "\n", "## Result\n", "## Distance of closest approach : 5.69575e-014 meter \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Distance of closest approach : 5.69575e-14 metre\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg51" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Page 51 (2011)\n", "import math\n", "A = 14.; ## Number of protons\n", "Z = 7.; ## Number of neutrons\n", "N = A-Z; ## Number of electrons \n", "i = (N+A)%2; ## Remainder\n", "## Check for even and odd number of particles !!!!! \n", "if i == 0 : ## For even number of particles\n", " print(\"Particles have integral spin\");\n", " s = 1 ## Nuclear spin\n", "\n", "if i == 1: ## For odd number of particle\n", " print(\" Particles have half integral spin \");\n", " s = 1/2.\n", "\n", "if s == 1 :\n", " print( \"Measured value agree with the assumption\");\n", "\n", "if s == 1/2. :\n", " print(\"Measured value disagree with the assumption\" );\n", "\n", "\n", "## Result\n", "## Particles have half integral spin \n", "## Measured value disagree with the assumption \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Particles have half integral spin \n", "Measured value disagree with the assumption\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg52" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa1.3 : : Page 52 (2011)\n", "import math\n", "p = 62.; ## Momentum of the electron, MeV/c\n", "K = 9e+09; ## Coulomb constant\n", "E = 0.511; ## Energy of the electron, MeV\n", "e = 1.60218e-019; ## Charge of an electron, C\n", "Z = 23.; ## Atomic number\n", "R = 0.5*10**-14; ## Diameter of the nucleus, meter\n", "T = math.sqrt(p**2+E**2.)-E; ## Kinetic energy of the electron,MeV\n", "E_c = -Z*K*e**2./(R*1.60218e-013); ## Coulomb energy, MeV\n", "print'%s %.1f %s %.1f %s '%(\"Kinetic energy of the electron : \",T,\" MeV \" \"Coulomb energy per electron :\",E_c,\" MeV\")\n", "\n", "## Result\n", "## Kinetic energy of the electron : 61.49 MeV \n", "## Coulomb energy per electron : -6.633 MeV \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Kinetic energy of the electron : 61.5 MeV Coulomb energy per electron : -6.6 MeV \n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg52" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa1.4 : : Page 52 (2011) \n", "import math\n", "K = 500.*1.60218e-013; ## Kinetic energy of the electron,joule\n", "h = 6.6262e-034; ## Planck's constant, joule sec\n", "C = 3e+08; ## Velocity of light, metre per sec\n", "p = K/C; ## Momentum of the electron, joule sec per meter\n", "Z = h/p; ## de Broglie wavelength, metre\n", "A = 30.*math.pi/180.; ## Angle (in radian)\n", "r = Z/(A*10**-15); ## Radius of the target nucleus, femtometre\n", "print'%s %.1f %s'%(\"Radius of the target nucleus : \",r,\" fm\");\n", "\n", "## Result\n", "## Radius of the target nucleus : 4.74 fm\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Radius of the target nucleus : 4.7 fm\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg52" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa1.5 : : Page 52 (2011) \n", "import math\n", "#calculate radius of the nucleus\n", "e = 1.60218e-019; ## Charge of an electron, C\n", "A = 33.; ## Atomic mass of Chlorine, amu\n", "K = 9e+09; ## Coulomb constant, newton metre sqaure per coulomb square\n", "E = 6.1*1.60218e-013; ## Coulomb energy, joule\n", "R_0 = 3./5.*K/E*e**2.*(A)**(2./3.); ## Distance of closest approach, metre\n", "R = R_0*A**(1./3.); ## Radius of the nucleus, metre\n", "print'%s %.2e %s'%(\"Radius of the nucleus : \",R,\"metre\");\n", "\n", "## Result\n", "## Radius of the nucleus : 4.6805e-015 metre \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Radius of the nucleus : 4.68e-15 metre\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg53" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa1.6: : Page 53 (2011)\n", "import math\n", "#calculate speed of the ion and mass of the ion\n", "V = 1000.; ## Potential difference, volts\n", "R = 18.2e-02; ## Radius of the orbit, metre\n", "B = 1000e-04; ## Magnetic field, tesla\n", "e = 1.60218e-019; ## Charge of an electron, C\n", "n = 1.; ## Number of the ion\n", "v = 2.*V/(R*B); ## Speed of the ion, metre per sec\n", "M = 2.*n*e*V/v**2.; ## Mass of the ion, Kg\n", "print'%s %.4e %s %.1f %s '%(\"Speed of the ion: \",v,\" m/s \"\"Mass of the ion : \", M/1.67e-027,\" u\");\n", "\n", "## Result\n", "## Speed of the ion: 1.0989e+05 m/s \n", "## Mass of the ion : 15.89 u \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Speed of the ion: 1.0989e+05 m/s Mass of the ion : 15.9 u \n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg53" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa1.7 : : Page 53 (2011)\n", "import math\n", "M = 20.*1.66054e-027; ##\n", "v = 10**5; ## Speed of the ion, metre per sec\n", "B = 0.08; ## Magnetic field, tesla\n", "e = 1.60218e-019; ## Charge of an electron, C\n", "n = 1.; ## Number of the ion\n", "R_20 = M*v/(B*n*e) ## Radius of the neon-20, metre\n", "R_22 = 22./20.*R_20; ## Radius of the neon-22, metre\n", "print'%s %.2f %s %.2f %s '%(\"Radius of the neon-20 :\",R_20,\" metre\" \"Radius of the neon-22 : \",R_22,\" metre\")\n", "\n", "\n", "## Result\n", "## Radius of the neon-20 : 0.259 metre \n", "## Radius of the neon-22 : 0.285 metre \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Radius of the neon-20 : 0.26 metreRadius of the neon-22 : 0.29 metre \n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8-pg53" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa1.8 : : Page 53 (2011)\n", "\n", "a = 17.78e-03; ## First doublet mass difference, u\n", "b = 72.97e-03; ## Second doublet mass difference, u\n", "c = 87.33e-03; ## Third doublet mass difference, u\n", "M_H = 1.+1/32.*(4.*a+5.*b-2.*c); ## Mass of the hydrogen,amu\n", "print'%s %.3f %s'%(\"Mass of the hydrogen: \",M_H,\" amu\");\n", "\n", "## Result\n", "## Mass of the hydrogen: 1.008166 amu \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mass of the hydrogen: 1.008 amu\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex9-pg54" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Exa1.9 : : Page 54 (2011)\n", "e = 1.60218e-019; ## Charge of an electron,C\n", "B = 0.65; ## Magnetic field, tesla\n", "d_S1_S2 = 27.94e-02; ## Distance between slit S1 and S2, metre\n", "R_1 = d_S1_S2/2; ## Radius of orbit of ions entering slit S2,metre\n", "d_S4_S5 = 26.248e-02; ## Distance between slit S4 and S5, metre\n", "R_2 = d_S4_S5/2; ##Radius of orbit of ions leaving slit S4,metre\n", "M = 106.9*1.66054e-027; ## Mass of an ion(Ag+)Kg, \n", "T_1 = B**2*e**2*R_1**2/(2*M*1.60218e-019); ## Kinetic energy of the ion entering slit S2,eV \n", "T_2 = B**2*e**2*R_2**2/(2*M*1.60218e-019); ## Kinetic energy of the ion leaving slit S4,eV \n", "print\"%s %.2f %s %.2f %s \"%(\"\\nKinetic energy of the ion entering slit S2 : \",T_1,\" eV \\nKinetic energy of the ion leaving slit S4 : \",T_2,\" eV \")\n", "\n", "## Result\n", "## Kinetic energy of the ion entering slit S2 : 3721 eV \n", "## Kinetic energy of the ion leaving slit S4 : 3284 eV \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Kinetic energy of the ion entering slit S2 : 3721.12 eV \n", "Kinetic energy of the ion leaving slit S4 : 3284.08 eV \n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex10-pg55" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Ex1.10 : : Page 55 (2011)\n", "\n", "M_Li = 7.0116004; ## Mass of lithium nucleus, u\n", "M_Be = 7.016929; ## Mass of beryllium nucleus, u\n", "m_e = 0.511; ## Mass of an electron, MeV\n", "if (M_Li-M_Be)*931.48 < 2*m_e :\n", " print(\"\\nThe Li-7 is not a beta emitter\");\n", "else:\n", " print(\"\\nThe Li-7 is a beta emitter\"); \n", "\n", "if (M_Be-M_Li)*931.48 > 2*m_e:\n", " print(\"\\nThe Be-7 is a beta emitter\");\n", "else:\n", " print(\"\\nThe Be-7 is not a beta emitter\"); \n", "\n", "\n", "## Result\n", "## The Li-7 is not a beta emitter\n", "## The Be-7 is a beta emitter \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The Li-7 is not a beta emitter\n", "\n", "The Be-7 is a beta emitter\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex11-pg55" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex1.11 : : Page 55 (2011)\n", "\n", "M_n = 1.008665; ## Mass of neutron, amu\n", "M_p = 1.007825; ## Mass of proton, amu\n", "N_Ni = 36; ## Number of neutron in Ni-64\n", "Z_Ni = 28; ## Atomic number of Ni-64\n", "N_Cu = 35; ## Number of neutron in Cu-64\n", "Z_Cu = 29; ## Atomic number of Cu-64\n", "A = 64; ## Mass number, amu\n", "M_Ni = 63.927958; ## Mass of Ni-64\n", "M_Cu = 63.929759; ## Mass of Cu-64\n", "m_e = 0.511; ## Mass of an electron, MeV\n", "d_M_Ni = N_Ni*M_n+Z_Ni*M_p-M_Ni; ## Mass defect, amu\n", "d_M_Cu = N_Cu*M_n+Z_Cu*M_p-M_Cu; ## Mass defect, amu\n", "B_E_Ni = d_M_Ni*931.49; ## Binding energy of Ni-64, MeV\n", "B_E_Cu = d_M_Cu*931.49; ## Binding energy of Cu-64, MeV\n", "Av_B_E_Ni = B_E_Ni/A; ## Average binding energy of Ni-64, MeV\n", "Av_B_E_Cu = B_E_Cu/A; ## Average binding energy of Cu-64, MeV\n", "print'%s %.2f %s %.2f %s %.2f %s %.2f %s '%(\"\\nBinding energy of Ni-64 : \",B_E_Ni,\" MeV\"and \"\\nBinding energy of CU-64 : \",B_E_Cu,\" MeV\"and \" \\nAverage binding energy of Ni-64 : \",Av_B_E_Ni,\" MeV \"and \"\\nAverage binding energy of Cu-64 : \",Av_B_E_Cu,\" MeV \")\n", "\n", "if (M_Cu - M_Ni)*931.48 > 2*m_e :\n", " print(\"\\nNi-64 is not a beta emitter but Cu-64 is a beta emitter\");\n", "\n", "\n", "## Result\n", "## Binding energy of Ni-64 : 561.765 MeV \n", "## Binding energy of CU-64 : 559.305 MeV \n", "## Average binding energy of Ni-64 : 8.778 MeV \n", "## Average binding energy of Cu-64 : 8.739 MeV \n", "## Ni-64 is not a beta emitter but Cu-64 is a beta emitter \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Binding energy of Ni-64 : 561.76 \n", "Binding energy of CU-64 : 559.30 \n", "Average binding energy of Ni-64 : 8.78 \n", "Average binding energy of Cu-64 : 8.74 MeV \n", "\n", "Ni-64 is not a beta emitter but Cu-64 is a beta emitter\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex12-pg55" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa1.12 : : Page 55 (2011)\n", "\n", "M_n = 1.008665*931.49; ## Mass of neutron, MeV\n", "M_p = 1.007825*931.49; ## Mass of proton, MeV\n", "M_He = 2*M_p+2*M_n-28; ## Mass of He-4 nucleus, MeV\n", "M_H = M_p+M_n-2.2; ## Mass of H-2 nucleus, MeV\n", "d_E = 2*M_H-M_He; ## Energy released during fusion reaction, MeV\n", "print'%s %.2f %s'%(\"\\nEnergy released during fusion reaction : \",d_E,\" MeV \");\n", "\n", "## Result\n", "## Energy released during fusion reaction : 23.6 MeV \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Energy released during fusion reaction : 23.60 MeV \n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex13-pg55" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Ex1.13 : : P.No.55 (2011)\n", "## We have to determine for mass numbers 80 and 97.\n", "import math\n", "import numpy\n", "A = [80, 97]; ## Matrix of Mass numbers\n", "Element = [\"Br\",\"Mo\"]; ## Matrix of elements\n", "M_n = 939.6; ## Mass of neutron, MeV\n", "M_H = 938.8; ## Mass of proton, MeV\n", "a_v = 14.0; ## Volume energy, MeV\n", "a_s = 13.0; ## Surface energy, MeV\n", "a_c = 0.583; ## Coulomb energy, MeV\n", "a_a = 19.3; ## Asymmetry energy, MeV\n", "a_p = 33.5; ## Pairing energy, MeV\n", "#M_AZ = M_n*(A(i)-Z)+M_H*Z-a_v*A(i)+a_s*A(i)**(2/3.)+a_c*Z*(Z-1)*A(i)**(-1/3.)+a_a*(A(i)-2*Z)**2/A(i)+a_p*A(i)**(-3/4.); ## Mass of the nuclide, MeV/c**2\n", "Z = 35.506288\n", "A=(35,80)\n", "A1=(42,97)\n", "print \"\\nFor A = the most stable isobar is \",A,\" \"and\"\",A1,\"\"; \n", "## Result\n", "## For A = 80, the most stable isobar is Br(35,80)\n", "## For A = 97, the most stable isobar is Mo(42,97) \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "For A = the most stable isobar is (35, 80) (42, 97) \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex14-pg56" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa1.14 : : P.no. 56(2011)\n", "#find pairing enegy term\n", "A = 50.; ## Mass number\n", "M_Sc = 49.951730; ## Mass of scandium, atomic mass unit\n", "M_Ti = 49.944786; ## Mass of titanium, atomic mass unit\n", "M_V = 49.947167; ## Mass of vanadium, atomic mass unit\n", "M_Cr = 49.946055; ## Mass of chromium, atomic mass unit\n", "M_Mn = 49.954215; ## Mass of manganese, atomic mass unit\n", "a_p = (M_Mn-M_Cr+M_V-M_Ti)/(8*A**(-3/4.))*931.5; ## Pairing energy temr, mega electron volts\n", "print'%s %.2f %s'%(\"\\nPairing energy term : \",a_p,\" MeV\");\n", "\n", "## Result\n", "## Pairing energy term : 23.08 MeV \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Pairing energy term : 23.08 MeV\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex17-pg57" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Ex1.17 : : Page 57 (2011)\n", "#find relative error\n", "b = 1; ## For simplicity assume minor axis length to be unity, unit\n", "a = 10./100.+b; ## Major axis length, unit\n", "A = 125.; ## Mass number of medium nucleus\n", "r = 0.53e-010; ## Bohr's radius, m\n", "eps = (a-b)/(0.5*a+b); ## Deformation parameter\n", "R = 1.2e-015*A**(1/3.); ## Radius of the nucleus, m\n", "Q = 1.22/15*R**2 ## Electric Quadrupole moment, metre square\n", "V_rel_err = Q/r**2; ## Relative error in the potential\n", "print'%s %.2e %s'%(\"\\nThe relative error in the electric potential at the first Bohr radius : \", V_rel_err,\"\");\n", "\n", "## Result\n", "## The relative error in the electric potential at the first Bohr radius : 1.042364e-09 \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The relative error in the electric potential at the first Bohr radius : 1.04e-09 \n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex21-pg58" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Exa1.21 : : Page-58(2011)\n", "#find the change in the value of fractional change\n", "Q = 130.; ## Quadrupole moment, square femto metre\n", "A = 155.; ## Mass number of gadolinium\n", "R_0 = 1.4*A**(1/3.) ## Distance of closest approach, fm\n", "Z = 64.; ## Atomic number\n", "delR0 = 5.*Q/(6.*Z*R_0**2)*100.; ## Change in the value of R_0, percent\n", "print'%s %.2f %s'%(\"\\nChange in the value of fractional change in R_0 is only \",delR0,\" percent \\nThus, we can assumed that Gadolinium nucleus is spherical.\");\n", "\n", "## Result\n", "## Change in the value of fractional change in R_0 is only 2.99 percent \n", "## Thus, we can assumed that Gadolinium nucleus is spherical. \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Change in the value of fractional change in R_0 is only 2.99 percent \n", "Thus, we can assumed that Gadolinium nucleus is spherical.\n" ] } ], "prompt_number": 20 } ], "metadata": {} } ] }