{ "metadata": { "name": "", "signature": "sha256:4d84c99a98fc36f8db8573496dfc2db7b4d7fab1f15bbd72f54e5f05cedbe4d8" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter3-Solar Energy Collectors" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.6.1-pg100" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex3.6.1.;calculate: solar altitude anglr,Incident angle,Collector efficiency\n", "import math\n", "##Solar declination :delta\n", "n=1\n", "delta=23.45*math.sin((360./365.)*(284.+n));\n", "print'%s %.2f %s'%(\" Solar declination delta=\",delta,\" degree\");\n", "fie=22.;##degree\n", "##solar hour angle ws=0,(at mean of 11:30 and 12:30)\n", "ws=0.;\n", "##Solar altitude anglr alpha is given by\n", "\n", "##alpha=asind(((cos(fie)*cos(delta)*cos(ws))+(sin(fie)*sin(delta)))\n", "##let\n", "a=math.cos((22*math.pi)/180.)*math.cos((-23*math.pi)/180.)*math.cos(0);\n", "b=math.sin((22*math.pi)/180.)*math.sin((-23*math.pi)/180.);\n", "##therefore\n", "sin_alpha=a+b;\n", "print'%s %.2f %s'%(\"\\n sin_aplha=\",sin_alpha,\"\");\n", "alpha=math.asin(sin_alpha);\n", "print'%s %.2f %s'%(\"\\n aplha=\",alpha,\"degree\");\n", "##Incident angle\n", "theta=(180./2.)-alpha;\n", "print'%s %.2f %s'%(\"\\n Incident angle=\",theta,\"degree\");\n", "##Rb is given by\n", "Rb=((math.cos(((22*math.pi)/180.)-(37*math.pi)/180.)*math.cos((-23*math.pi)/180.)*math.cos(0))+(math.sin(((22*math.pi)/180.)-(37*math.pi)/180)* math.sin((-23*math.pi)/180)))/sin_alpha;\n", "print'%s %.2f %s'%(\"\\n Rb=\",Rb,\"\");\n", "##Effective absorptance product is <t.alpha>=t.alpha/ 1-(1-alpha)*pd\n", "pd=0.24;##Diffuse reflectance for two glass covers\n", "##let TA=<t.alpha>\n", "TA=(0.88*0.90)/(1-(1-0.90)*pd);\n", "print'%s %.2f %s'%(\"\\n Effective absorptance product is <t.alpha>=\",TA,\"\");\n", "##Solar radiation intensity(consider beam radiation only)\n", "##Hb=0.5 ly/mm = 0.5 cal/cm^2 * min\n", "Hb=((0.5*10**4)/10**3)*60;##unit=kcal/m^2 hr\n", "print'%s %.2f %s'%(\"\\n Hb=\",Hb,\" kcal/m^2 hr\");\n", "Hb=Hb*1.163;##unit=W/m^2 hr; [since 1 kcal = 1.163 watt]\n", "print'%s %.2f %s'%(\"\\n Hb=\",Hb,\" W/m^2 hr\");\n", "##S=Hb*Rb*<t.alpha>\n", "S=Hb*Rb*TA;\n", "print'%s %.2f %s'%(\"\\n S=\",S,\" W/m^2 hr\");\n", "s=S/1.163;\n", "print'%s %.2f %s'%(\"\\n S=\",s,\" kcal/m^2 hr\");\n", "##Useful gain\n", "##qu=FR(S-UL*(Tfi-Ta))\n", "qu=0.810*(s-(6.80*(60-15)))\n", "print'%s %.2f %s'%(\"\\n qu=\",qu,\" kcal/m^2 hr\");\n", "##Qu=FR(S-UL*(Tfi-Ta))\n", "Qu=0.810*(S-(7.88*(60-15)))\n", "print'%s %.2f %s'%(\"\\n qu=\",Qu,\" W/m^2 hr\");\n", "##Collection Efficiency : nc=(qu/(Hb*Rb))*100;\n", "nc=(28.07/(300*Rb))*100.;\n", "print'%s %.2f %s'%(\"\\n Collection Efficiency=\",nc,\" persent\");\n", "\n", "\n", "##values of \"sine alpha\" in the textbook is taken approximate to the real values\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Solar declination delta= -23.38 degree\n", "\n", " sin_aplha= 0.71 \n", "\n", " aplha= 0.79 degree\n", "\n", " Incident angle= 89.21 degree\n", "\n", " Rb= 1.40 \n", "\n", " Effective absorptance product is <t.alpha>= 0.81 \n", "\n", " Hb= 300.00 kcal/m^2 hr\n", "\n", " Hb= 348.90 W/m^2 hr\n", "\n", " S= 396.50 W/m^2 hr\n", "\n", " S= 340.93 kcal/m^2 hr\n", "\n", " qu= 28.29 kcal/m^2 hr\n", "\n", " qu= 33.94 W/m^2 hr\n", "\n", " Collection Efficiency= 6.68 persent\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.9.1-pg 119" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##calculate the useful gain,exit fluid temperature and collection efficiency\n", "##Optical properties are estimated as\n", "p=0.85;\n", "import math\n", "##(T. alpha)=0.77;let A=(T. alpha)\n", "A=0.77\n", "gama=0.94;\n", "Do=0.06;\n", "L=8;##unit=meter,##L=length of concentrator\n", "W=2;##W=width of concentrator in meter\n", "dco=0.09;##dco=diameter of transpaarent cover\n", "Ar= math.pi*Do*L;##Ar=area of the receiver pipe\n", "A_alpha=(W-dco)*L;##aperture area of the concentration\n", "Cp=0.30;##unit=kcal/kg degree calcius\n", "m=400;##unit=kg/hr,m=flow rate\n", "HbRb=600;##unit=kcal/hr m^2\n", "Tfi=150;##degree calcius\n", "T_alpha=25;##degree calcius\n", "##Heat transfer coefficient from fluid inside to surroundings,\n", "Uo=5.2;##unit=kcal/hr-m^2\n", "##Heat transfer coefficient from absorber cover surface to surroundings,\n", "UL=6;##unit=kcal/hr-m^2\n", "F=(Uo/UL);\n", "##Heat removed factor FR is\n", "##FR=((m*Cp)/(Ar*UL))*(1-(%e^-((Ar*UL*F)/(m*Cp))))\n", "##let X=(m*Cp)/(Ar*UL);Y=(%e^-((Ar*UL*F)/(m*Cp)))\n", "X=(m*Cp)/(1.51*UL*0.86);\n", "Y=math.e**(-1/X);\n", "FR=X*0.86*(1-Y);\n", "##Absorbed solar energy is\n", "S=HbRb*p*gama*A;\n", "print'%s %.2f %s %.2f %s'%(\" Area of the receiver pipe Ar= \",Ar,\"=1.51 m^2\"and\" \\n A_aplha= \",A_alpha,\" m^2=collection efficiency factor \");\n", "print'%s %.2f %s'%(\"\\n value of F= \",F,\"\");\n", "print'%s %.2f %s %.2f %s '%(\"\\n Heat removed factor FR=\",FR,\"\"and\" \\n Absorbed solar energy is \\n S=\",S,\" kcal/Hr m^2 .....(MKS) \");\n", "##for unit in S.I. , 1 kcal/Hr m^2 = 1.16298 W/m^2\n", "s= S*1.16298; ##in W/m^2\n", "print'%s %.2f %s'%(\"\\n S=\",s,\" W/m^2.....(SI)\");\n", "##the values of F,FR will be same in any unit,since they are factors(dimensionless)\n", "##Useful Gain=Qu=A_alpha*FR*(S-((Ar*UL)/A_alpha)*(Tfi-T_alpha))\n", "##In MKS unit\n", "Qu=A_alpha*FR*(S-((1.51*UL)/A_alpha)*(Tfi-T_alpha))\n", "print'%s %.2f %s'%(\"\\n useful gain in (MKS) Qu=\",Qu,\" kcal/hr\");\n", "##IN SI unit\n", "qu=A_alpha*FR*(s-((1.51*6.98)/A_alpha)*(Tfi-T_alpha))##UL=6.98 W/m^2 degree celcius\n", "print'%s %.2f %s'%(\"\\n useful gain in (SI) Qu=\",qu,\" Watt\");\n", "##the exit fluid temperature can be obtained from\n", "tci=150;##degree celcius\n", "tco=tci+(Qu/(m*Cp));##from Qu=mCp(tco-tc); where, tco=collector fluid temp. at outlet,tci=Fluid inlet temp.\n", "n=(Qu/(16*HbRb))*100;##ncollector=Qu/(A_alpha*HbRb)*100;\n", "print'%s %.2f %s %.2f %s'%(\"\\n collector fluid temp. at outlet tco=\",tco,\" degree celcius\"and \" \\n ncollector = \",n,\" percent \");\n", "\n", "##The values/results/answers is approximate in the text book to the real calculated value\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Area of the receiver pipe Ar= 1.51 \n", " A_aplha= 15.28 m^2=collection efficiency factor \n", "\n", " value of F= 0.87 \n", "\n", " Heat removed factor FR= 0.83 369.14 kcal/Hr m^2 .....(MKS) \n", "\n", " S= 429.30 W/m^2.....(SI)\n", "\n", " useful gain in (MKS) Qu= 3753.64 kcal/hr\n", "\n", " useful gain in (SI) Qu= 4365.07 Watt\n", "\n", " collector fluid temp. at outlet tco= 181.28 \n", " ncollector = 39.10 percent \n" ] } ], "prompt_number": 2 } ], "metadata": {} } ] }