{ "metadata": { "name": "", "signature": "sha256:d00c9ea51730a1b6437dbc1a47dd440964ac0aa8f905cf2a7a400eee72336e32" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter14-Thermionic Generation" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.4.1-pg738" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex.14.4.1.;Calculate the efficiency of the generator and also compare with the carnot efficiency\n", "import math\n", "##cathode work funtion \n", "flux_c=2.5;##unit=volts\n", "##anode work funtion \n", "flux_a=2.;##unit=volts\n", "##Temp. of cathode\n", "Tc=2000.;##unit=degree k\n", "##Temp. of surrounding\n", "Ts=1000.;##unit=degree k\n", "##plasma potentail drop\n", "flux_p=0.1;##unit=volts\n", "##Net output voltage\n", "V=flux_c-flux_a-flux_p\n", "print'%s %.2f %s'%(\" V=\",V,\" volt\");\n", "##charge of an electron\n", "e=1.6*10**-19.;##unit=coulomb\n", "##boltzmann constant\n", "k=1.38*10**-23.;##unit=joule/degree kelvin\n", "A=1.20*10**6;\n", "##one electron volt=1.6*10**-19 joule\n", "##The net current in the generator J=J_cathode-J_anode\n", "##let EC=e**(-flux_c/k*Tc)\n", "EC=math.e**(-(1.6*10**-19*flux_c)/(k*Tc));\n", "J_cathode=A*(Tc*Tc)*EC##J_cathode=A*Tc**2*e**(-flux_c/k*Tc)\n", "print'%s %.2f %s'%(\"\\n J_cathode=\",J_cathode,\" amp/m^2\");\n", "##let EA=e**(-flux_c/k*Ts)\n", "EA=math.e**(-(1.6*10**-19*flux_a)/(k*Ts));\n", "J_anode=A*(Ts**2)*EA;##J_cathode=A*Ts**2*e**(-flux_c/k*Ts)\n", "print'%s %.2f %s'%(\"\\n J_anode=\",J_anode,\" amp/m^2\");\n", "##The net current can be taken =Jc,as Ja can be neglected in comparison with Jc\n", "J=J_cathode;\n", "print'%s %.2f %s'%(\"\\n J=\",J,\" amp/m^2\");\n", "##The heat supplied to the cathode Qc/Ac=J(flux_c+((2*k*Tc)/e))+samestion of sigma*(Tc**4-Ts**4)\n", "##let QA=Qc/Ac; and\n", "a=2.5+((2*1.38*10**-23*2000.)/(1.6*10**-19));\n", "b=J*a;\n", "c=(0.2*5.67*(10**-12.)*(10**-4.)*((2000**4)-(1000**4)));\n", "##therefore\n", "QA=b+c; ##since: QA=(J*(2.5+((2*(1.38*10**-23)*2000*)/(1.6*10**-19))))+(0.2*5.67*(10**-12)*(10**-4)*((2000**4)-(1000**4)))\n", "print'%s %.2f %s'%(\"\\n The heat supplied to the cathode Qc/Ac=\",QA,\" watt/m^2\");\n", "##efficiency of the generator\n", "ng=((J*V)/(7.026*10**6))*100.;\n", "print'%s %.2f %s'%(\"\\n ng=\",ng,\" persent\");\n", "##carnot efficiency this device\n", "T1=2000.;\n", "T2=1000.;\n", "T=2000.;\n", "nc=((T1-T2)/T)*100.;\n", "print'%s %.2f %s'%(\"\\n nc=\",nc,\" persent\");\n", "\n", "\n", "##Value of \"The heat supplied to the cathode Qc/Ac\" is given wrong\n", "##value of charge e is taken wrong;corrected by giving value 1.6*10**-19\n", "##value of J anode is differ from calculated value. \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " V= 0.40 volt\n", "\n", " J_cathode= 2438475.02 amp/m^2\n", "\n", " J_anode= 102.00 amp/m^2\n", "\n", " J= 2438475.02 amp/m^2\n", "\n", " The heat supplied to the cathode Qc/Ac= 6937461.44 watt/m^2\n", "\n", " ng= 13.88 persent\n", "\n", " nc= 50.00 persent\n" ] } ], "prompt_number": 1 } ], "metadata": {} } ] }