{ "metadata": { "name": "", "signature": "sha256:7dac7ff4d7c0b0efd562d141ece5753006bca27ad006e31a868bd655b584d707" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter10-Chemical Energy Sources" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.2.8.1-pg585" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex10.2.8.1;Find Reversible voltage for hydrogen oxygen fuel cell\n", "del_G=-237.3*10**3;##Joules/gm-mole of H2\n", "##Reversible voltafe E of a cell is given by =del_Wrev/nF=-del_G/nF\n", "##since 2 electrons are transferred per molecule of H2.thus\n", "n=2.;\n", "F=96500.;##Faraday's constant\n", "E=-del_G/(n*F);\n", "print'%s %.2f %s'%(\"Reversible voltage=\",E,\" volts\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Reversible voltage= 1.23 volts\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.2.8.2-pg585" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex10.2.8.2;calculate voltage output of cell,efficiency,electric work output,heat transfer to the surroundings\n", "import math\n", "##1] voltage output of cell\n", "del_G=-237.3*10**3;##Joules/gm-mole of H2\n", "n=2.;\n", "F=96500.;##Faraday's constant\n", "E=-del_G/(n*F);\n", "print'%s %.2f %s'%(\" E=\",E,\" volts\");\n", "##2] Efficiency\n", "##nmax=del_Wmax/-(del_H)25 degree celcuis = -(del_G)T/(-del_H)25\n", "del_G_at298k=-56690.;##unit=kcal/kg mole\n", "del_H_at298k=-68317.;##unit=kcal/kg mole\n", "nmax=del_G_at298k/del_H_at298k\n", "print'%s %.2f %s'%(\"\\n nmax=\",nmax,\"\")\n", "##3]Electric work output per mole\n", "F=(96500/4.184);\n", "del_Wrever=(n*F*E);\n", "print'%s %.2f %s'%(\"\\n Electric work output per mole=\",del_Wrever,\" kcal/kg mole\");\n", "##4] Heat transfer to the surroundings\n", "##the heat transfer is Q=T*del-s=del_H_at298k-del_G_at298k\n", "Q=del_H_at298k-del_G_at298k;\n", "print'%s %.2f %s'%(\"\\n The heat transfer is Q=\",Q,\" kcal/kg mole\");\n", "##The negative sign indicates that the heat is removed from the cell and transferred to the surrounding\n", "\n", "##value of \"Electric work output per mole\" is approximate in the text book to the real calculated value" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " E= 1.23 volts\n", "\n", " nmax= 0.83 \n", "\n", " Electric work output per mole= 56716.06 kcal/kg mole\n", "\n", " The heat transfer is Q= -11627.00 kcal/kg mole\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.2.8.3-pg587" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex10.2.8.3;The heat transferred to the surrounding\n", "import math\n", "del_G_at298k=-237191.;##unit=kJ/kg mole\n", "del_H_at298k=-285838.;##unit=kJ/kg mole\n", "ne=2.;\n", "F=96500.;##Faraday's constant\n", "E=-del_G_at298k/(ne*F);\n", "print'%s %.2f %s'%(\" E=\",E,\" volts\");\n", "nmax=del_G_at298k/del_H_at298k\n", "print'%s %.2f %s'%(\"\\n nmax=\",nmax,\"\");\n", "nmax=nmax*100;\n", "print'%s %.2f %s'%(\"=0\",nmax,\" persent\");\n", "##Electric work output per mole of the fule is We=-del_G kJ/kg mole\n", "We=del_G_at298k##kJ/kg mole\n", "print'%s %.2f %s'%(\"\\n Electric work output per mole of the fule is We=\",We,\" kJ/kg mole\")\n", "##since there is 1 mol os H2O for each mole of fule,there is also a work output of 237191 kJ/kg mole\n", "##Heat transferred is Q=T*del-s=del_H_at298k-del_G_at298k\n", "Q=del_H_at298k-del_G_at298k;\n", "print'%s %.2f %s'%(\"\\n The heat transfer is Q=\",Q,\" kJ/kg mole\");\n", "##The negative sign indicates that the heat is removed from the cell and transferred to the surrounding\n", "\n", "##value of \"Electric work output per mole\" is misprinted in the text book.\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " E= 1.23 volts\n", "\n", " nmax= 0.83 \n", "=0 82.98 persent\n", "\n", " Electric work output per mole of the fule is We= -237191.00 kJ/kg mole\n", "\n", " The heat transfer is Q= -48647.00 kJ/kg mole\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.2.8.4-pg587" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex10.2.8.4;calculate del_G,del_S,del_H;\n", "import math\n", "##We have the relation del_G=-n*F*E\n", "##where,del_G=gibbs free energy of the system at 1 atm and temperature(T)\n", "n=1.;##numbers of electons transferred per molecule of reactant\n", "E=0.0455;##volts ;e.m.f. of the cell\n", "F=96500.;##Faraday's constant\n", "##let X=dE/dT\n", "X=0.000338;\n", "del_G=-n*F*E;\n", "print'%s %.2f %s'%(\" del_G=\",del_G,\" joules\");\n", "##del_S = Entropy change of the system at temperature T and press p=1 atm in the case\n", "del_S=n*F*(X);##del_S=n*F*(dE/dT)\n", "print'%s %.2f %s'%(\"\\n del_S=\",del_S,\" joules/deg.\");\n", "##And entropy change is given by the relation del_H=nF[T(dE/dT)-E]\n", "T=298;\n", "del_H=n*F*((T*X)-E);\n", "print'%s %.2f %s'%(\"\\n del_H=\",del_H,\" joule\");\n", "\n", "\n", "##value are taken approximate in the text book to the real calculated value\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " del_G= -4390.75 joules\n", "\n", " del_S= 32.62 joules/deg.\n", "\n", " del_H= 5329.12 joule\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.2.8.5-pg588" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex10.2.8.5;heat transfer rate would be involved under these circumstances\n", "import math\n", "del_G_at25degree_celcius=-195500.;##unit=cal/gm mole\n", "del_H_at25degree_celcius=-212800.;##unit=cal/gm mole\n", "F=(96500/4.184);##since F=96500 coulombs/gm-mole\n", "n=8.\n", "E_at25degree_celcius=-del_G_at25degree_celcius/(n*F);##Joules/coulomb\n", "print'%s %.2f %s'%(\" E_at25degree_celcius=\",E_at25degree_celcius,\" volts=1.060 volts\");\n", "##Max. efficiency nmax=del_Wmax/-(del_H)at25 degree celcuis = -(del_G)T/(-del_H)25\n", "nmax=del_G_at25degree_celcius/del_H_at25degree_celcius;\n", "print'%s %.2f %s'%(\"\\n nmax=\",nmax,\"\");\n", "##voltage efficiency nv=on load voltage/open circuit voltage=Operating voltage/Theoretical voltage\n", "Theoretical_voltage=1.060/0.92;\n", "print'%s %.2f %s'%(\"\\n Theoretical_voltage=\",Theoretical_voltage,\" volts\");\n", "##power developed=100 kW=100*10^3 W\n", "power_developed=(100*10**3)*0.86;##unit=kcal/hr; since 1 watt=1 joule/sec=0.86 kcal/hr\n", "print'%s %.2f %s'%(\"\\n power_developed=\",power_developed,\" kcal/hr\");\n", "del_G=-195500.;\n", "##Required flow rate of Methane\n", "R_F_R_O_M=(power_developed*16.)/del_G;##kg/hr;\n", "##(methane moles)=16\n", "print'%s %.2f %s'%(\"\\n flow rate of Methane=\",R_F_R_O_M,\" kg/hr\");\n", "##Heat transfer Q=T8del_s=del_H+del_w=del_H-del_G\n", "Q=del_H_at25degree_celcius-del_G_at25degree_celcius;\n", "print'%s %.2f %s'%(\"\\n The heat transfer is Q=\",Q,\" kcal/kg mole\");\n", "\n", "##The value are approximate in the text book to the real calculated value\n", "##value of \"Required flow rate of methane\" is wrong in the text book.\n", "##value of \"Heat transfer\" is wrong in the text book.\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " E_at25degree_celcius= 1.06 volts=1.060 volts\n", "\n", " nmax= 0.92 \n", "\n", " Theoretical_voltage= 1.15 volts\n", "\n", " power_developed= 86000.00 kcal/hr\n", "\n", " flow rate of Methane= -7.04 kg/hr\n", "\n", " The heat transfer is Q= -17300.00 kcal/kg mole\n" ] } ], "prompt_number": 2 } ], "metadata": {} } ] }