{ "metadata": { "name": "", "signature": "sha256:89d0949b61b404b5225e0d1d1fa6fa40a7e6670219cda64657a01ef547822266" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 5 Fiber optics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.1 Page no 184" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "u1 =1.48 #refractive index of cladding\n", "u2 =1.5 #refractive index of core\n", "u =1\n", "\n", "#Calculation\n", "import math\n", "theta = math.asin (u1/u2)*180/3.14\n", "Fr =((u2 -u1)/u2)*100\n", "A= math.asin ( math.sqrt (u2**2- u1**2) )\n", "NA=math.sin(A)\n", "\n", "#Result\n", "print\"(i) Critical angle is\",round(theta,2),\"degree\"\n", "print\"(ii)Fractional refractive index is\",round(Fr,2),\"% of light\"\n", "print\"(iii) Acceptance angle is\",round(A,2),\"radian\"\n", "print\"(iv) Numerical aperture is\",round(NA,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Critical angle is 80.67 degree\n", "(ii)Fractional refractive index is 1.33 % of light\n", "(iii) Acceptance angle is 0.25 radian\n", "(iv) Numerical aperture is 0.24\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.2 Page no 184" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "uf=1.5\n", "A1=0.005\n", "u=1.45\n", "\n", "#Calculation\n", "import math\n", "uc=uf*(1-A1)\n", "x=uc/uf\n", "A=math.asin(x)*180/3.14\n", "X=math.sqrt((uf**2)-(uc**2))\n", "A11=math.asin(X)*180/3.14\n", "Na=X\n", "\n", "#Result\n", "print\"(a) Refractive index is\",round(uc,2)\n", "print\"(b) Critical internal reflacting angle is\",round(A,2),\"Degree\"\n", "print\"(c) Acceptance angle is\",round(A11,4),\"Degree\"\n", "print\"(d) Numerical aperature is\",round(Na,4)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Refractive index is 1.49\n", "(b) Critical internal reflacting angle is 84.31 Degree\n", "(c) Acceptance angle is 8.6204 Degree\n", "(d) Numerical aperature is 0.1498\n" ] } ], "prompt_number": 54 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3 Page no 185" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "NA =0.22 # Numerical Aperatur e\n", "Fr =0.012\n", "\n", "#Calculation\n", "import math\n", "u1=NA/ math.sqrt (Fr *(2 - Fr))\n", "u2= math.sqrt (u1**2- NA**2) \n", "\n", "#result\n", "print\"Refractive index of core is\",round(u1,2)\n", "print\"Refractive index of clad is\",round(u2,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Refractive index of core is 1.42\n", "Refractive index of clad is 1.41\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.4 Page no 185" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "u1 =1.62 #refractive index of core\n", "u2 =1.52 # refractive index of clad\n", "\n", "#Calculation\n", "import math\n", "A= math.asin ( math.sqrt (u1**2- u2**2) )*180/3.14\n", "NA=math.sin(A*3.14/180.0)\n", "\n", "#Result\n", "print\"Acceptance length is\",round(A,2),\"Degree\"\n", "print\"Numerical aperature is\",round(NA,4)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Acceptance length is 34.1 Degree\n", "Numerical aperature is 0.5604\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.5 Page no 185" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "Na=0.20\n", "u=1.59\n", "uw=1.33\n", "\n", "#Calculation\n", "import math\n", "uc=math.sqrt(Na**2+u**2)\n", "NA=(math.sqrt(uc**2-u**2))/uw\n", "A= math.asin(NA)*180/3.14\n", "\n", "#Result\n", "print\"Acceptance angle is\", round(A,1),\"Degree\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Acceptance angle is 8.7 Degree\n" ] } ], "prompt_number": 60 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.6 Page no 186" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "uc=1.45\n", "uf=1.5\n", "ua=1\n", "\n", "#Calculation\n", "import math\n", "a=math.asin(uc/uf)*180/3.14\n", "NA=math.sqrt(uf**2-uc**2)\n", "N=math.asin(NA)*180/3.14\n", "\n", "#Result\n", "print\"Critical angle is\",round(a,1) ,\"Degree\"\n", "print\"Acceptance angle is\",round(N,2),\"Degree\"\n", "print\"Nemerical aperature is\",round(NA,3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Critical angle is 75.2 Degree\n", "Acceptance angle is 22.6 Degree\n", "Nemerical aperature is 0.384\n" ] } ], "prompt_number": 73 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.7 Page no 186" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "w=0.850 #micro m\n", "NA=0.22\n", "a=50/2.0 #micro m\n", "\n", "#Calculation\n", "import math\n", "V=2*math.pi*a*NA/w\n", "N=V**2/4.0\n", "\n", "#Result\n", "print\"V numver is\", round(V,2)\n", "print\"Number of modes is\",round(N,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "V numver is 40.66\n", "Number of modes is 413.23\n" ] } ], "prompt_number": 80 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.8 Page no 187" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "NA=0.16\n", "uc=1.45\n", "d=0.6 #M\n", "w=9*10**-7\n", "\n", "#Calculation\n", "import math\n", "V=math.pi*d*NA/w\n", "\n", "#Result\n", "print\"Normalized frequency is\",round(V*10**-5,2),\"*10**5\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Normalized frequency is 3.35 *10**5\n" ] } ], "prompt_number": 84 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.9 Page no 187" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "uc=1.52\n", "d=29*10**-6\n", "a=0.007\n", "w=1.3*10**-6\n", "\n", "#Calculation\n", "import math\n", "u=uc-(uc*a)\n", "V=(math.pi*d/w)*math.sqrt(uc**2-u**2)\n", "N=V**2/2.0\n", "\n", "#Result\n", "print\"(i) The fiber V-number is\",round(V,2)\n", "print\"(ii) The number of modes is\",round(N,0),\"Modes\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) The fiber V-number is 12.58\n", "(ii) The number of modes is 79.0 Modes\n" ] } ], "prompt_number": 93 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.10 Page no 187" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "uf=1.48\n", "uc=1.46\n", "w=0.82 #micro m\n", "a=25 \n", "\n", "#Calculation\n", "import math\n", "V=2*math.pi*a*math.sqrt(uf**2-uc**2)/w\n", "N=V**2/2.0\n", "\n", "print\"Number of modes is\", round(N,0)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Number of modes is 1079.0\n" ] } ], "prompt_number": 97 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.11 Page no 188" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "uf=1.48\n", "u=1.46\n", "c=3*10**8\n", "\n", "#Calculation\n", "a=(uf-u)/uf\n", "af=uf*1000*a/(c*(1-a))\n", "t=af*20\n", "\n", "#Result\n", "print\"Dispersion per kilometer of length is\", round(af*10**9,1),\"ns\"\n", "print\"Total dispersion is\",round(t*10**6,2),\"ms\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Dispersion per kilometer of length is 67.6 ns\n", "Total dispersion is 1.35 ms\n" ] } ], "prompt_number": 110 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.12 Page no 188" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "a=40 #ps/nm-Km\n", "w=1.5 #nm\n", "b=20 #Km\n", "\n", "#Calculation\n", "A=a*w*b\n", "\n", "#Result\n", "print\"Material dispersion is\",A*10**-3,\"ns\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Material dispersion is 1.2 ns\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.13 Page no 188" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "d=6.6 #ps/nm-Km\n", "w=1.5 #nm\n", "l=20 #Km\n", "\n", "#Calculation\n", "import math\n", "A=d*w*l\n", "\n", "#Result\n", "print\"Wavelength dispersion is\",A,\"ps\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength dispersion is 198.0 ps\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.14 Page no 188" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Givem\n", "uc=1.5\n", "c=3.0*10**5 #Km/s\n", "z=6\n", "\n", "#Calculation\n", "u=uc/100.0\n", "a=(uc*z/c)*(uc/(uc-u)-1)\n", "\n", "#Result\n", "print\"Delay difference is\", round(a*10**8,1),\"m sec\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Delay difference is 30.3 m sec\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.15 Page no 189" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "a=3.5 #db/Km\n", "P1=0.5 #mW\n", "L=4\n", "b=25.11\n", "\n", "#Calculation\n", "import math\n", "N=a*L\n", "P0=P1/b\n", "\n", "#Result\n", "print \"Power level is\",round(P0*10**3,1),\"micro W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power level is 19.9 micro W\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.16 Page no 189" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "uc=1.558\n", "a=0.026\n", "z=10**3 #m\n", "c=3*10**8\n", "\n", "#Calculation\n", "D=uc*a*z/(c*(1-a))\n", "D1=D*10\n", "\n", "#Result\n", "print\"Dispersion/Km is\",round(D*10**8,1),\"n sec\"\n", "print\"Total dispersion in 10 Km is\",round(D1*10**8,1),\"n sec\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Dispersion/Km is 13.9 n sec\n", "Total dispersion in 10 Km is 138.6 n sec\n" ] } ], "prompt_number": 32 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.17 Page no 189" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "uc=1.5\n", "a=0.026\n", "c=3*10**8\n", "\n", "#Calculation\n", "A=(uc*a**2*1000)/(8*c)\n", "\n", "#Result\n", "print\"Maximum dispersion is\",round(A*10**9,2),\"ns/Km\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum dispersion is 0.42 ns/Km\n" ] } ], "prompt_number": 37 } ], "metadata": {} } ] }