{ "metadata": { "name": "", "signature": "sha256:96f5d1279be2252c9ff04c355e85834215067f6eb464abda89728ac05eeaeb23" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 18 Uncertainty Principle and Quantum Statistics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.1 Page no 122" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "h=1.05*10**-34\n", "x=10.0**-8\n", "m=9.1*10**-31\n", "\n", "#Calculation\n", "p=h/x\n", "v=h/m\n", "\n", "#Result\n", "print\"Minimum uncertainty in its velocity is\",round(v*10**4,2),\"*10**4 m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Minimum uncertainty in its velocity is 1.15 *10**4 m/s\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.2 Page no 122" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "E=200\n", "m=9*10**-31\n", "e=1.602*10**-19\n", "h=6.626*10**-34\n", "r=10**-6\n", "\n", "#Calculation\n", "import math\n", "p=math.sqrt(2*m*E*e)\n", "p1=h/(2*r)\n", "a=p1/p\n", "\n", "#Result\n", "print\"Uncertainty introduced in the angle of emergence is\", round(a*10**5,2),\"*10**-6 radians\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Uncertainty introduced in the angle of emergence is 4.36 *10**-6 radians\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.3 Page no 123" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "h=1.05*10**-34 #j-s\n", "v=3*10**7 #m/s\n", "m0=9*10**-31 #Kg\n", "c=3*10**8\n", "\n", "#Calculation\n", "import math\n", "x=(h/(m0*v))*(math.sqrt(1-(v/c)*2))\n", "\n", "#Result\n", "print\"Smallest possible uncertainty is\", round(x*10**10,3),\"A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Smallest possible uncertainty is 0.039 A\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.4 Page no 123" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "h=1.05*10**-34\n", "x=0.0001\n", "m=9*10**-31\n", "X=5*10**-10\n", "m1=1.67*10**-27\n", "\n", "#Calculation\n", "p=h/x\n", "v=p*10**-9/(m*X)\n", "M=4*m1\n", "V=p/(M*X)\n", "\n", "#Result\n", "print\"Uncertainty in the velocity of electron is\", round(v,2),\"*10**3 m/s\"\n", "print\"Uncertainty in the velocity of alpha particle is\",round(V*10**-4,1),\"m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Uncertainty in the velocity of electron is 2.33 *10**3 m/s\n", "Uncertainty in the velocity of alpha particle is 31.4 m/s\n" ] } ], "prompt_number": 48 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.5 Page no 124" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "E=200 #eV\n", "A=1.6*10**-19 #J\n", "S=9*10**-31\n", "q=2\n", "x=1.05*10**-34 #J.s\n", "y=2*10**-6 #m\n", "\n", "#Calculation\n", "import math\n", "P=math.sqrt(q*S*E*A)\n", "P1=x/y\n", "P2=P1/P\n", "\n", "#Result\n", "print\"The uncertainty introduced in the angle of emergence is\",round(P2*10**6,2),\"10**-6 radians\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The uncertainty introduced in the angle of emergence is 6.92 10**-6 radians\n" ] } ], "prompt_number": 56 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.6 Page no 124" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "a=1.05*10**4 #ms**-1\n", "b=0.01 \n", "h=1.05*10**-34 #Js\n", "m=9*10**-31\n", "s=100\n", "\n", "#Calculation\n", "v=h*s/(m*b*h)\n", "\n", "#Result\n", "print\"The uncertainty in the position of the electron is\",round(v*10**-34,1),\"10**-4 m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The uncertainty in the position of the electron is 1.1 10**-4 m\n" ] } ], "prompt_number": 65 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.7 Page no 124" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "q=50 #g\n", "w=300 #ms**-1\n", "i=0.01\n", "d=1000.0\n", "e=100.0\n", "h=6.62*10**-34\n", "\n", "#Calculation\n", "b=(w*(q/d)*(i/e))\n", "b1=h/(2*math.pi*b)\n", "\n", "#Result\n", "print\"The accuracy is\",round(b1*10**32,0),\"10**-32 m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The accuracy is 7.0 10**-32 m\n" ] } ], "prompt_number": 78 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.8 Page no 124" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "y=10**12\n", "h=6.62*10**-34\n", "a=2\n", "\n", "#Calculation\n", "import math\n", "E=h/(a*math.pi*y)\n", "E1=E/h\n", "\n", "#Result\n", "print\"The probable uncertainty in energy is\",round(E*10**46,3),\"10**-22 J\"\n", "print\"The frequency of a gamma-ray is\",round(E1*10**13,2),\"10**11 Hz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The probable uncertainty in energy is 1.054 10**-22 J\n", "The frequency of a gamma-ray is 1.59 10**11 Hz\n" ] } ], "prompt_number": 89 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.9 Page no 125" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "h=6.63*10**-34 #J.sec\n", "a=10**-8\n", "b=2\n", "\n", "#Calculation\n", "import math\n", "E=h/(b*math.pi*a)\n", "v=E/h\n", "\n", "#Result\n", "print\"The uncertainty in the energy is\",round(E*10**26,3),\"10**-26 J\"\n", "print\"The uncertainty in the frwquency of light is\",round(v*10**-7,2),\"10**7 Hz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The uncertainty in the energy is 1.055 10**-26 J\n", "The uncertainty in the frwquency of light is 1.59 10**7 Hz\n" ] } ], "prompt_number": 99 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.10 Page no 125" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "a=10**-8 #sec\n", "h=1.05*10**-34\n", "l=1.6*10**-19\n", "\n", "#Calculation\n", "g=h/a\n", "E=g/l\n", "\n", "#Result\n", "print\"The limit of accuracy is\",round(E*10**8,2)*10**-8,\"eV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The limit of accuracy is 6.56e-08 eV\n" ] } ], "prompt_number": 113 } ], "metadata": {} } ] }