{ "metadata": { "name": "", "signature": "sha256:99c63cd5d461a992de3be34298ef557332677985056a4e6a31ae5dace5faabc1" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 9: Statistical Physics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.4, Page 303" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "k = 1.38e-023; # Boltzmann constant, J/K\n", "N_A = 6.023e+023; # Avogadro's number\n", "T = 293; # Room temperature, K\n", "e = 1.6e-019; # Energy equivalent of 1 eV, J\n", "\n", "#Calculations\n", "# For a single molecule\n", "K_bar_single = 3./2*k*T/e; # Mean translational kinetic energy of a single gas molecule, J\n", "# For a 1 mole of molecules\n", "K_bar_mole = K_bar_single*N_A*e; # Mean translational kinetic energy of 1 mole of gas molecules, J\n", "\n", "#Results\n", "print \"The mean translational kinetic energy of the single idela gas molecule = %5.3f eV\"%K_bar_single\n", "print \"The mean translational kinetic energy of the one mole of ideal gas molecules = %4d J\"%(math.ceil(K_bar_mole))\n", "\n", "#Answer differs due to rounding error" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The mean translational kinetic energy of the single idela gas molecule = 0.038 eV\n", "The mean translational kinetic energy of the one mole of ideal gas molecules = 3654 J\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.3, Page 310" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "k = 1.38e-023; # Boltzmann constant, J/K\n", "u = 1.67e-027; # Mass equivalent of one atomic mass unit, kg\n", "T = 293; # Room temperature, K\n", "m_H = 1.008*u; # Gram atomic mass of hydrogen, kg\n", "\n", "#Calculations&Results\n", "m = 2*m_H; # Gram molecular mass of hydrogen molecule, kg\n", "v_bar = 4/math.sqrt(2*math.pi)*math.sqrt(k*T/m); # Mean molecular speed in the light gas hydrogen, m/s\n", "print \"The mean molecular speed in the light gas hydrogen = %4d m/s\"%(math.ceil(v_bar))\n", "m = 222*u; # Gram atomic mass of Radon, kg\n", "v_bar = 4/math.sqrt(2*math.pi)*math.sqrt(k*T/m); # Mean molecular speed in the heavy radon gas, m/s\n", "print \"The mean molecular speed in the heavy radon gas = %3d m/s\"%(math.ceil(v_bar))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The mean molecular speed in the light gas hydrogen = 1749 m/s\n", "The mean molecular speed in the heavy radon gas = 167 m/s\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.4, Page 310" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import scipy\n", "from scipy.integrate import quad\n", "\n", "#Variable declaration\n", "m = 1; # For simplicity assume mass of gas molecule to be unity, kg\n", "k = 1.38e-023; # Boltzmann constant, J/K\n", "T = 293; # Room temperature, K\n", "\n", "#Calculations\n", "bita = k*T; # Energy associated with three degrees of freedom, J\n", "v_mps = math.sqrt(2/(bita*m)); # For simplcity assume most probable speed to be unity, m/s\n", "C = (bita*m/(2*math.pi))**(3./2); # Constant in the distribution function\n", "p = lambda v: 4*math.pi*C*math.exp(-1./2*bita*m*v**2)*v**2\n", "P,err = scipy.integrate.quad(p,0.99*v_mps, 1.01*v_mps)\n", "\n", "#Result\n", "print \"The fraction of molecules in an ideal gas in equilibrium which have speeds within 1 percent above and below the most probable speed = %5.3f\"%P" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The fraction of molecules in an ideal gas in equilibrium which have speeds within 1 percent above and below the most probable speed = 0.017\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.6, Page 315" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import numpy\n", "import math\n", "\n", "#Variable declaration\n", "k = 1.38e-023; # Boltzmann constant, J/K\n", "T = [293, 5000, 1e+006]; # Room temperature, temperature at the surface of the star and temperature at the star interior respectively, K\n", "e = 1.6e-019; # Energy equivalent of 1 eV, J\n", "g_E1 = 2; # Possible configuration of the electrons in ground state of H-atom\n", "g_E2 = 8; # Possible configuration of the electrons in the first excited state of H-atom\n", "E1 = -13.6; # Energy of the ground state, eV\n", "E2 = -3.4; # Energy of the first excited state state, eV\n", "\n", "#Calculations&Results\n", "n_ratio = numpy.zeros(3);\n", "for i in range(0,3):\n", " n_ratio[i] = g_E2/g_E1*math.exp(1./(k*T[i])*(E1 - E2)*e);\n", " print \"For T = %4.2e K, n_E2/n_E1 = %4.2e\"%(T[i], n_ratio[i])\n", "\n", "#Incorrect answer given in textbook for the first part" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "For T = 2.93e+02 K, n_E2/n_E1 = 2.05e-175\n", "For T = 5.00e+03 K, n_E2/n_E1 = 2.14e-10\n", "For T = 1.00e+06 K, n_E2/n_E1 = 3.55e+00\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.7, Page 320" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "e = 1.6e-019; # Energy equivalent of 1 eV, J\n", "n = 8.47e+028; # Number density of conduction electrons in copper, per metre cube\n", "k = 1.38e-023; # Boltzmann constant, J/K\n", "h = 6.626e-034; # Planck's constant, Js\n", "m = 9.11e-031; # Mass of an electron, kg\n", "\n", "#Calculations\n", "E_F = h**2/(8*m*e)*(3*n/math.pi)**(2./3); # Fermi energy for copper, eV\n", "T_F = E_F*e/k; # Fermi temperature for copper, K\n", "\n", "#Results\n", "print \"The Fermi energy for copper = %4.2f eV\"%E_F\n", "print \"The Fermi temperature for copper = %4.2e K\"%T_F" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Fermi energy for copper = 7.04 eV\n", "The Fermi temperature for copper = 8.16e+04 K\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.8, Page 323" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "R = 1; # For simplicity assume the molar gas constant to be unity, J/mol/K\n", "T = 293; # Room temperature, K\n", "T_F = 8.16e+004; # The Fermi temperature for copper\n", "\n", "#Calculations&Results\n", "C_V = math.pi**2*T/(2*T_F)*R; # Electronic contribution to the molar heat capacity for copper, J/mol/K\n", "print \"The electronic contribution to the molar heat capacity for copper = %6.4fR\"%C_V\n", "T_F = 6.38e+004; # The Fermi temperature for silver\n", "C_V = math.pi**2*T/(2*T_F)*R; # Electronic contribution to the molar heat capacity for silver, J/mol/K\n", "print \"The electronic contribution to the molar heat capacity for silver = %6.4fR\"%C_V" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The electronic contribution to the molar heat capacity for copper = 0.0177R\n", "The electronic contribution to the molar heat capacity for silver = 0.0227R\n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }