{ "metadata": { "name": "", "signature": "sha256:ac0a66c98f2095bc3ebf2778dcd991b562e3ba004b2f051bfaa777d8205d2aed" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 7: The Hydrogen Atom" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.2, Page 248" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import scipy\n", "import math\n", "from scipy.integrate import quad\n", "\n", "#Variable declaration\n", "a0 = 1; # For simplicity assume Bohr radius to be unity, m\n", "\n", "#Calculations&Results\n", "x = lambda r:r**4*math.exp(-r/a0)\n", "int1,err = scipy.integrate.quad(x,0,15)\n", "y = lambda t:math.sin(t)**3\n", "int2,err = scipy.integrate.quad(y,0,math.pi)\n", "z = lambda p:p**0\n", "int3,err = scipy.integrate.quad(z,0,2*math.pi)\n", "NE = 1./(64*math.pi*a0**5)*int1*int2*int3;\n", "print \"NE = %.f\"%NE\n", "if round(NE) == 1:\n", " print \"The hydrogen wave function is normalized\"\n", "else:\n", " print \"The hydrogen wave function is not normalized\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "NE = 1\n", "The hydrogen wave function is normalized\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.4, Page 252" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "n = 3; # Principal quantum number\n", "\n", "#Calculations&Results\n", "Total = 0;\n", "print (\"\\nn l m_l 2(l + 1)\");\n", "print (\"\\n------------------------------------\");\n", "for l in range(0,n):\n", " print (\"\\n%d\"% n),\n", " print (\" %d \"% l),\n", " if l > 0:\n", " count = 0;\n", " for m_l in range(-l,l+1):\n", " print (\"%2d \"% m_l),\n", " count = count + 1;\n", "\n", " if l == 1:\n", " print(\" \"),\n", " else:\n", " print(\"\"),\n", "\n", " else :\n", " m_l = 0;\n", " count = 0;\n", " print(\"%2d \"% m_l),\n", " count = count + 1;\n", "\n", " print(\" %d\"% count),\n", " Total = Total + count;\n", "\n", "print(\"\\n Total = %d\"% Total);\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "n l m_l 2(l + 1)\n", "\n", "------------------------------------\n", "\n", "3 0 0 1 \n", "3 1 -1 0 1 3 \n", "3 2 -2 -1 0 1 2 5 \n", " Total = 9\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.7, Page 256" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "e = 1.602e-019; # Charge on an electron, C\n", "h = 6.62e-034; # Planck's constant, Js\n", "h_bar = h/(2*math.pi); # Reduced Planck's constant, Js\n", "m = 9.11e-031; # Electron mass, kg\n", "B = 2.00; # External magnetic field, T\n", "m_l1 = 0; # Lower orbital magnetic quantum number\n", "m_l2 = 1; # Upper orbital magnetic quantum number\n", "\n", "#Calculations\n", "delta_m_l = m_l2 - m_l1; # Change in m_l\n", "mu_B = e*h_bar/(2*m); # Bohr's magneton, J/T\n", "delta_E = mu_B*B*delta_m_l/e; # Energy difference between components of p states of atomic hydrogen placed in the external field, eV\n", "\n", "#Results\n", "print \"The value of Bohr magneton = %4.2e J/T\"%mu_B\n", "print \"The energy difference between components of p states of atomic hydrogen placed in the external field = %4.2e eV\"%delta_E" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of Bohr magneton = 9.26e-24 J/T\n", "The energy difference between components of p states of atomic hydrogen placed in the external field = 1.16e-04 eV\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.8, Page 257" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "m = 1.67e-027; # Mass of the proton, kg\n", "k = 1.38e-023; # Boltzmann constant, J/K\n", "T = 663; # Temperature of the discharge tube, K\n", "\n", "#Calculations\n", "v_x = math.sqrt(3*k*T/m); # Average speed of the hydrogen atom\n", "mu_z = 9.27e-024; # Bohr's magneton, J/T\n", "B_grad = 1240; # Magnetic field gradient, T/m\n", "delta_x = 0.03; # Length of the homogeneous magnetic field, m\n", "d = 1/(2*m)*(mu_z*B_grad)*(delta_x/v_x)**2; # Separation of the atomic beam, m\n", "\n", "#Result\n", "print \"The separation of the atomic beam = %4.2f mm\"%(d/1e-003)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The separation of the atomic beam = 0.19 mm\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.9, Page 259" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "n = 4; # Principal quantum number\n", "l = 2; # For 4d-state\n", "\n", "#Calculations&Results\n", "print \"\\nn l m_l m_s\"\n", "print \"\\n------------------------------------------\"\n", "count = 0;\n", "for m_l in range(-l,3):\n", " if (m_l == 0):\n", " print \"%d\\t\"%n,\n", " print \" %d\"%l,\n", " print \" %d \"%m_l,\n", " print \" +1./2, -1./2\"\n", " else: \n", " print \" %2d\"%m_l,\n", " print \" +1./2, -1./2\"\n", " count = count + 2;\n", " \n", "print \"Total No. of different states for 4d level of atomic hydrogen = %d\"%count\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "n l m_l m_s\n", "\n", "------------------------------------------\n", " -2 +1./2, -1./2\n", " -1 +1./2, -1./2\n", "4\t 2 0 +1./2, -1./2\n", " 1 +1./2, -1./2\n", " 2 +1./2, -1./2\n", "Total No. of different states for 4d level of atomic hydrogen = 10\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.10, Page 263" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "def check_allowance(dn, dl, dml, dms):\n", " if (dl == -1 or dl == 1 or dml == -1 or dml == 0 or dml == 1 or dms == -1 or dms == 0 or dms == 1) and dl != 0:\n", " return 1;\n", " else:\n", " return 0;\n", "\n", "\n", "state = [[2, 0, 0, 1./2],[ 3, 1, 1, 1./2],[ 2, 0, 0, 1./2],[ 3, 0, 0, 1./2],[ 4, 2, -1, -1./2],[ 2, 1, 0, 1./2]];\n", "for i in range(0,5,2):\n", " flag = 0; \n", " d_n = state[i][0] - state[i+1][0];\n", " d_l = state[i][1] - state[i+1][1];\n", " d_m_l = state[i][2] - state[i+1][2];\n", " d_m_s = state[i][3] - state[i+1][3];\n", " flag = check_allowance(d_n, d_l, d_m_l, d_m_s);\n", " if flag == 1:\n", " print(\"\\n\\nThe transition (%d,%d,%d,1/%d) --> (%d,%d,%d,1/%d) is allowed\"%( state[i][0], state[i][1], state[i][2], state[i][3]*4, state[i+1][0], state[i+1][1], state[i+1][2], state[i+1][3]*4))\n", " delta_E = -13.6*(1./state[i+1][0]**2-1./state[i][0]**2);\n", " print(\"The energy of this transition is %4.2f eV\"% delta_E);\n", " else:\n", " print(\"\\n\\nThe transition (%d,%d,%d, %d)--> (%d,%d,%d,%d) is not allowed\"%(state[i][0], state[i][1], state[i][2], state[i][3], state[i+1][0], state[i+1][1], state[i+1][2], state[i+1][3]))\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "The transition (2,0,0,1/2) --> (3,1,1,1/2) is allowed\n", "The energy of this transition is 1.89 eV\n", "\n", "\n", "The transition (2,0,0, 0)--> (3,0,0,0) is not allowed\n", "\n", "\n", "The transition (4,2,-1,1/-2) --> (2,1,0,1/2) is allowed\n", "The energy of this transition is -2.55 eV\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.13, Page 266" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import scipy\n", "from scipy.integrate import quad\n", "import math\n", "\n", "#Variable declaration\n", "a0 = 1; # For simplicity assume bohr radius to be unity\n", "\n", "#Calculations\n", "p = lambda r: 4/a0**3*math.exp(-2*r/a0)*r**2\n", "P,err = scipy.integrate.quad(p, a0, 10);\n", "\n", "#Result\n", "print \"The probability of the electron in the 1s state of the hydrogen atom = %4.2f\"%P" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The probability of the electron in the 1s state of the hydrogen atom = 0.68\n" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }