{ "metadata": { "name": "", "signature": "sha256:7517050ba0696175203050b56e4b3028360e141a8084f59fc65a505aa1a45787" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 5: Wave Properties of Matter and Quantum Mechanics I" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.1, Page 167" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "N_A = 6.022e+23; # Avogdaro's No., per mole\n", "n = 1; # Order of diffraction\n", "M = 58.5; # Molecular mass of NaCl, g/mol\n", "rho = 2.16; # Density of rock salt, g/cc\n", "two_theta = 20; # Scattering angle, degree \n", "theta = two_theta/2; # Diffraction angle, degree\n", "\n", "#Calculations\n", "N = N_A*rho*2/(M*1e-006); # Number of atoms per unit volume, per metre cube \n", "d = (1/N)**(1./3); # Interplanar spacing of NaCl crystal, m \n", "lamda = 2*d*math.sin(theta*math.pi/180)/n ; # Wavelength of X-rays using Bragg's law, m\n", "\n", "#Result\n", "print \"The wavelength of the incident X rays = %5.3f nm\"%(lamda/1e-009)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength of the incident X rays = 0.098 nm\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.2, Page 168" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "h = 6.63e-034; # Planck's constant, Js\n", "c = 3e+008; # Speed of light, m/s\n", "\n", "#Calculations&Results\n", "# For a moving ball\n", "m = 0.057; # Mass of the ball, kg\n", "v = 25; # Velocity of ball, m/s\n", "p = m*v; # Momentum of the ball, kgm/s\n", "lamda = h/p; # Lambda is the wavelength of ball, nm\n", "print \"The wavelength of ball = %3.1e m\"%lamda\n", "\n", "# For a moving electron\n", "m = 0.511e+006; # Rest mass of an electron, eV\n", "K = 50; # Kinetic energy of the electron, eV\n", "p = math.sqrt(2*m*K); # Momentum of the electron, kgm/s\n", "lamda = h*c/(1.602e-019*p*1e-009); # Wavelength of the electron, nm\n", "print \"The wavelength of the electron = %4.2f nm\"%lamda\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength of ball = 4.7e-34 m\n", "The wavelength of the electron = 0.17 nm\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3, Page 173" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "m = 9.1e-31; # Mass of the electron, kg\n", "h = 6.63e-34; # Planck's constant, Js\n", "c = 3e+008; # Speed of light, m/s\n", "e = 1.6e-19; # Energy equivalent of 1 eV, J/eV\n", "V0 = 54; # Potential difference between electrodes, V\n", "\n", "#Calculations\n", "lamda = h*c/(math.sqrt(2*m*c**2/e*V0)*e*1e-009); # de Broglie wavelength of the electron, nm\n", "\n", "#Result\n", "print \"The de Broglie wavelength of the electron used by Davisson and Germer = %5.3f nm\"%lamda" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The de Broglie wavelength of the electron used by Davisson and Germer = 0.167 nm\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.4, Page 174" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "h = 6.63e-34; # Planck's constant, Js\n", "c = 3e+008; # Speed of light, m/s\n", "e = 1.6e-19; # Energy equivalent of 1 eV, J/eV\n", "m = 1.67e-27; # Mass of a neutron, kg\n", "k = 1.38e-23; # Boltzmann constant, J/mol/K\n", "T = [300, 77]; # Temperatures, K\n", "\n", "#Calculations&Results\n", "lamda = h*c/(math.sqrt(3*m*c**2/e*k/e*T[0])*e); # The wavelength of the neutron at 300 K, nm\n", "print \"The wavelength of the neutron at %d K = %5.3f nm\"%(T[0], lamda/1e-09)\n", "lamda = h*c/(math.sqrt(3*m*c**2/e*k/e*T[1])*e); # The wavelength of the neutron at 77 K, nm\n", "print \"The wavelength of the neutron at %d K = %5.3f nm\"%(T[1], lamda/1e-09)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength of the neutron at 300 K = 0.146 nm\n", "The wavelength of the neutron at 77 K = 0.287 nm\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.7, Page 184" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "h = 6.626e-34; # Planck's constant, Js\n", "c = 3e+008; # Speed of light, m/s\n", "e = 1.602e-019; # Energy equivalent of 1 eV, J/ev\n", "d = 2000; # Distance between slit centres, nm\n", "K = 50e+003; # Kinetic energy of electrons, eV\n", "l = 350e+006; # Distance of screen from the slits, nm\n", "\n", "#Calculations\n", "lamda = 1.226/math.sqrt(K); # Non-relativistic value of de Broglie wavelength of the electrons, nm\n", "E0 = 0.511e+006; # Rest energy of the electron, J\n", "E = K + E0; # Total energy of the electron, J\n", "p_c = math.sqrt(E**2 - E0**2); # Relativistic mass energy relation, eV\n", "lambda_r = h*c/(p_c*e*1e-009); # Relativistic value of de Broglie wavelength, nm\n", "percent_d = (lamda - lambda_r)/lamda*100; # Percentage decrease in relativistic value relative to non-relavistic value\n", "sin_theta = lambda_r/d; # Bragg's law\n", "y = l*sin_theta; # The distance of first maximum from the screen, nm\n", "\n", "#Results\n", "print \"The percentage decrease in relativistic value relative to non-relativistic value = %1.0f percent\"%percent_d\n", "print \"The distance between first two maxima = %3.0f nm\"%y" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The percentage decrease in relativistic value relative to non-relativistic value = 2 percent\n", "The distance between first two maxima = 938 nm\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.8, Page 187" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "dx = 17.5; # The uncertainty in position, m\n", "h = 1.05e-034; # Reduced Planck's constant, Js\n", "\n", "#Calculations&Results\n", "dp_x = h/(2*dx); # The uncertainty in momentum, kgm/s\n", "print \"The uncertainty in momentum of the ball = %1.0e kg-m/s\"%dp_x\n", "dx = 0.529e-010; # The uncertainty in position, m\n", "dp_x = h/(2*dx); # The uncertainty in momentum, kgm/s\n", "print \"The uncertainty in momentum of the electron = %1.0e kg-m/s\"%dp_x" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The uncertainty in momentum of the ball = 3e-36 kg-m/s\n", "The uncertainty in momentum of the electron = 1e-24 kg-m/s\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.9, Page 188" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "a_0 = 5.29e-11; # Radius of H-atom, m\n", "l = 2*a_0; # Length, m\n", "h = 6.63e-34; # Planck's constant, Js\n", "m = 9.1e-31; # Mass of electron, kg\n", "\n", "#Calculations\n", "K_min = h**2/(8*(math.pi)**2*m*l**2); # Minimum kinetic energy possesed, J\n", "\n", "#Result\n", "print \"The minimum kinetic energy of the electron = %3.1f eV\"%(K_min/1.6e-19)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The minimum kinetic energy of the electron = 3.4 eV\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.10, Page 190" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "dx = 6e-015; # The uncertainty in position of the electron, m\n", "h_bar = 1.054e-034; # PReduced Planck's constant, Js\n", "e = 1.602e-019; # Energy equivalnet of 1 eV, J/eV\n", "c = 3e+008; # Speed of light, m/s\n", "E0 = 0.511e+006; # Rest mass energy of the electron, J\n", "\n", "#Calculations\n", "dp = h_bar*c/(2*dx*e); # Minimum electron momentum, eV/c\n", "p = dp; # Momentum of the electron at least equal to the uncertainty in momentum, eV/c\n", "E = math.sqrt(p**2+E0**2)/1e+006; # Relativistic energy of the electron, MeV \n", "K = E - E0/1e+006; # Minimum kinetic energy of the electron, MeV\n", "\n", "#Result\n", "print \"The minimum kinetic energy of the electron = %4.1f MeV\"%K" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The minimum kinetic energy of the electron = 15.9 MeV\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.12, Page 191" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "c = 3e+8; # Speed of light, m/s\n", "dt = 1e-08; # Relaxation time of atom, s\n", "h = 6.6e-34; # Planck's constant, Js\n", "dE = h/(4*math.pi*dt); # Energy width of excited state of atom, J\n", "lamda = 300e-009; # Wavelegth of emitted photon, m\n", "\n", "#Calculations&Results\n", "f = c/lamda; # Frequency of emitted photon, per sec\n", "print \"The energy width of excited state of the atom = %3.1e eV\"%(dE/1.6e-019)\n", "df = dE/h; # Uncertainty in frequency, per sec\n", "print \"The uncertainty ratio of the frequency = %1.0e\"%(df/f)\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The energy width of excited state of the atom = 3.3e-08 eV\n", "The uncertainty ratio of the frequency = 8e-09\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.13, Page 195" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "e = 1.6e-019; # Energy equivalent of 1 eV, J/eV\n", "c = 3e008; # Speed of light, m/s\n", "h = 6.63e-034; # Planck's constant, Js\n", "m = 9.1e-031; # Mass of the proton, kg\n", "l = 0.1; # Length of one-dimensional box, nm\n", "\n", "#Calculations&Results\n", "for n in range(1,4):\n", " E_n = n**2*(h*c/(e*1e-009))**2/(8*m*c**2/e*l**2); # Energy of nth level, eV\n", " print \"The first three energy levels are %3.0f eV\"%(E_n)\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The first three energy levels are 38 eV\n", "The first three energy levels are 151 eV\n", "The first three energy levels are 340 eV\n" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }