{ "metadata": { "name": "", "signature": "sha256:f42166d612e07dd5c211bc7a51c893df5fb381dff9d6c4c0494c5987d5a5f81d" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 4: Structure of the Atom" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.1, Page 129" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "m_e = 0.000549; # Rest mass of an electron, u\n", "m_He = 4.002603; # Rest mass of a helium, u\n", "\n", "#Calculations\n", "M_alpha = m_He - 2*m_e; # Mass of alpha particle, u\n", "theta_max = 2*m_e/M_alpha; # Maximum scttering angle for aplha particle, rad\n", "\n", "#Result\n", "print \"The maximum scattering angle for alpha particle = %5.3f degrees\"%(theta_max*180/math.pi)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum scattering angle for alpha particle = 0.016 degrees\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.2, Page 137" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "rho = 19.3; # Density of gold, g/cc\n", "N_A = 6.02e+023; # Avogadro's number\n", "N_M = 1; # Number of atoms per molecule\n", "M_g = 197; # Gram atomic mass of gold, g/mol\n", "n = rho*N_A*N_M/(M_g*1e-006); # Number density of gold atoms, atoms/metre-cube\n", "Z1 = 79; # Atomic number of gold\n", "Z2 = 2; # Atomic number of He nucleus\n", "t = 1e-006; # Thickness of the gold foil, m\n", "e = 1.602e-019; # Charge on an electron, C\n", "k = 9e+009; # Coulomb constant, N-Sq.m/C^2\n", "theta = 90.; # Angle of deflection of alpha particle, degrees\n", "K = 7.7; # Kinetic energy of alpha particles, MeV\n", "\n", "#Calculations\n", "f = math.pi*n*t*(Z1*Z2*e**2*k/(2*1.6e-013*K))**2*(1./math.tan(theta*math.pi/180/2))**2; # The fraction of alpha particles deflected\n", "\n", "#Result\n", "print \"The fraction of alpha particles deflected = %1.0e\"%f" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The fraction of alpha particles deflected = 4e-05\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.3, Page 138" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "rho = 19.3; # Density of gold, g/cc\n", "N_A = 6.02e+023; # Avogadro's number\n", "N_M = 1; # Number of atoms per molecule\n", "M_g = 197; # Gram atomic mass of gold, g/mol\n", "Z1 = 79; # Atomic number of gold\n", "Z2 = 2; # Atomic number of He nucleus\n", "t = 2.1e-007; # Thickness of the gold foil, m\n", "e = 1.602e-019; # Charge on an electron, C\n", "k = 9e+009; # Coulomb constant, N-Sq.m/C^2\n", "r = 1e-002; # Distance of the alpha particles from the target, m\n", "theta = 45; # Angle of deflection of alpha particle, degrees\n", "K = 7.7; # Kinetic energy of alpha particles, MeV\n", "\n", "#Calculations\n", "n = rho*N_A*N_M/(M_g*1e-006); # Number density of gold atoms, atoms/metre-cube\n", "f = n*t*(Z1*Z2*e**2*k)**2/((r*1.6e-013*K)**2*math.sin(theta*math.pi/180/2)**4*16); # The fraction of alpha particles deflected\n", "\n", "#Result\n", "print \"The fraction of alpha particles deflected at %d degrees = %3.1e per mm square\"%(theta, f/1e+006)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The fraction of alpha particles deflected at 45 degrees = 3.2e-07 per mm square\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.5, Page 139" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "Z1 = 2; # Atomic number of He nucleus\n", "Z2 = 13; # Atomic number of aluminium\n", "e = 1.602e-019; # Charge on an electron, C\n", "k = 9e+009; # Coulomb constant, N-Sq.m/C^2\n", "K = 7.7; # Kinetic energy of alpha particles, MeV\n", "\n", "#Calculations\n", "r_min = Z1*Z2*e**2*k/(K*1.6e-013); # Size of the aluminium nucleus, m\n", "\n", "#Result\n", "print \"The size of the aluminium nucleus = %3.1e m\"%r_min" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The size of the aluminium nucleus = 4.9e-15 m\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.6, Page 140" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "c = 3.00e+008; # Speed of light, m/s\n", "r = 0.5e-010; # Radius of the atom, m\n", "e = 1.6e-019; # Charge on an electron, C\n", "m_e = 9.11e-031; # Mass of the electron, kg\n", "k = 9e+009; # Coulomb constant, N-Sq.m/C^2\n", "\n", "#Calculations\n", "v = e*k**(1./2)/(m_e*r)**(1./2); # Speed of the electron, m/s\n", "\n", "#Result\n", "if v < 0.01*c:\n", " print \"The nonrelativistic treatment for calculating speed of the electron = %3.1e m/s is justified\"%v\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The nonrelativistic treatment for calculating speed of the electron = 2.2e+06 m/s is justified\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.7, Page 146" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import numpy \n", "import math\n", "\n", "#Variable declaration\n", "def check_region(lamda):\n", " if lamda >= 400. and lamda < 700.:\n", " return \"visible\";\n", " else:\n", " return \"infrared\";\n", " \n", "\n", "n_l = 3.; # Lower electron orbit in Paschen series\n", "n_u = [4, numpy.inf]; # First and limiting upper orbits in Paschen series\n", "R_inf = 1.0974e+007; # Rydberg constant, per metre\n", "\n", "#Calculations&Results\n", "lambda_max = 1./(R_inf*(1./n_l**2-1./n_u[0]**2)*1e-009); # The longest wavelength in Paschen series, nm\n", "region = check_region(lambda_max); # Check for the region\n", "print \"The maximum wavelength is %d nm and is in the %s region\"%(math.ceil(lambda_max), region)\n", "lambda_min = 1./(R_inf*(1./n_l**2-1./n_u[1]**2)*1e-009); # The shortest wavelength in Paschen series, nm\n", "region = check_region(lambda_min); # Check for the region\n", "print \"The minimum wavelength is %d nm and is also in the %s region\"%(lambda_min, region)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum wavelength is 1875 nm and is in the infrared region\n", "The minimum wavelength is 820 nm and is also in the infrared region\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.8, Page 149" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "m_e = 0.0005486; # Mass of an electron u\n", "m_p = 1.007276; # Mass of a proton, u\n", "m_d = 2.013553; # Mass of a deutron, u\n", "m_t = 3.015500; # Mass of a triton, u\n", "R_inf = 1.0974e+007; # Rydberg constant, per metre\n", "\n", "#Calculations\n", "R_H = 1./(1+m_e/m_p)*R_inf; # Rydberg constant for hydrogen\n", "R_D = 1./(1+m_e/m_d)*R_inf; # Rydberg constant for deuterium\n", "R_T = 1./(1+m_e/m_t)*R_inf; # Rydberg constant for tritium\n", "lambda_H = 1./(R_H*(1./2**2-1./3**2)*1e-009); # Wavelength of H_alpha line for hydrogen, nm\n", "lambda_D = 1./(R_D*(1./2**2-1./3**2)*1e-009); # Wavelength of H_alpha line for deuterium, nm\n", "lambda_T = 1./(R_T*(1./2**2-1./3**2)*1e-009); # Wavelength of H_alpha line for tritium, nm\n", "\n", "#Results\n", "print \"The wavelength of H_alpha line for hydrogen = %6.2f nm\"%lambda_H\n", "print \"The wavelength of H_alpha line for deutruim = %6.2f nm\"%lambda_D\n", "print \"The wavelength of H_alpha line for tritium = %6.2f nm\"%lambda_T" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength of H_alpha line for hydrogen = 656.45 nm\n", "The wavelength of H_alpha line for deutruim = 656.27 nm\n", "The wavelength of H_alpha line for tritium = 656.22 nm\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.9, Page 150" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import numpy\n", "\n", "#Variable declaration\n", "R = 1.0974e+007; # Rydberg constant, per metre\n", "Z = 3; # Atomic number of Li\n", "n_l = 1; # Lower orbit of Li++ ion\n", "n_u = numpy.inf; # Limiting orbit of Li++ ion\n", "\n", "#Calculations\n", "lamda = 1./(Z**2*R*(1/n_l**2-1/n_u**2)*1e-009); # The shortest wavelength emitted by Li++ ion, nm\n", "\n", "#Result\n", "print \"The shortest wavelength emitted by Li++ ion = %4.1f nm\"%lamda" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The shortest wavelength emitted by Li++ ion = 10.1 nm\n" ] } ], "prompt_number": 9 } ], "metadata": {} } ] }