{ "metadata": { "name": "", "signature": "sha256:c4aa0414ffd05acf8e49e96b92516d863d2c0354ef81a7502c4540359e267fb8" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 15: General Relativity" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.1, Page 562" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "g = 9.8; # Acceleration due to gravity, m/sec^2\n", "H = 10000; # Altitude of the aeroplane above the surface of earth, m\n", "c = 3.00e+008; # Speed of light in free space, m/s\n", "T = 45*3600; # Time taken by the airplane to from eastward to westward trip, s\n", "\n", "#Calculations\n", "delta_T_G = g*H*T/(c**2*1e-009); # Time difference in the two clocks due to gravitational redshift, ns\n", "C = 4e+007; # Circumference of the earth, m \n", "v = 300; # Speed of the jet airplane, m/s\n", "T0 = C/v; # Time of flight of jet airplane very near the surface of the earth, s\n", "bita = v/c; # Boost parameter\n", "# As from special relativity time dilation relation, T = T0*sqrt(1-bita^2), solving for T0 - T = delta_T_R, we have\n", "delta_T_R = T0*(1-math.sqrt(1-bita**2))/1e-009; # Time difference in the two clocks due to special relativity, ns\n", "\n", "#Result\n", "print \"The gravitational time dilation effect of %d ns is larger than the approximate %4.1f ns of that of special relativity.\"%(math.ceil(delta_T_G), delta_T_R)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The gravitational time dilation effect of 177 ns is larger than the approximate 66.7 ns of that of special relativity.\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.2, Page 567" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "c = 3.00e+008; # Speed of light in free space, m/s\n", "G = 6.67e-011; # Newton's gravitational constant, N-Sq.m/per kg square\n", "M_S = 2.0e+030; # Mass of the sun, kg\n", "M_E = 6.0e+024; # Mass of the earth, kg\n", "\n", "#Calculations\n", "r_S = 2*G*M_S/(c**2*1e+003); # Schwarzschild radius for sun, km\n", "r_E = 2*G*M_E/(c**2*1e-003); # Schwarzschild radius for earth, mm\n", "\n", "#Results\n", "print \"The Schwarzschild radius for sun = %d km\"%math.ceil(r_S)\n", "print \"The Schwarzschild radius for earth = %d mm\"%math.ceil(r_E)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Schwarzschild radius for sun = 3 km\n", "The Schwarzschild radius for earth = 9 mm\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.3, Page 568" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import scipy\n", "from scipy.integrate import quad\n", "\n", "#Variable declaration\n", "c = 3.00e+008; # Speed of light in free space, m/s\n", "G = 6.67e-011; # Newton's gravitational constant, N-Sq.m/per kg square\n", "h = 6.62e-034; # Planck's constant, Js\n", "\n", "#Calculations\n", "h_bar = h/(2*math.pi); # Reduced Planck's constant, Js\n", "sigma = 5.67e-008; # Stefan-Boltzmann constant, W per Sq.m per K^4\n", "k = 1.38e-023; # Boltzmann constant, J/K\n", "M0 = 1.99e+030; # Mass of the sun, kg\n", "alpha = 2*sigma*h_bar**4*c**6/((8*math.pi)**3*k**4*G**2); # A constant, kg^3/s\n", "T = lambda M: 1/alpha*M**2\n", "t,err = scipy.integrate.quad(T,0, 3*M0)\n", "\n", "#Result\n", "print \"The time required for the 3-solar-mass black hole to evaporate = %3.1e y\"%(t/(365.25*24*60*60))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The time required for the 3-solar-mass black hole to evaporate = 5.7e+68 y\n" ] } ], "prompt_number": 3 } ], "metadata": {} } ] }