{ "metadata": { "name": "", "signature": "sha256:ced2862e28b6da072a8a3e26efc3e44712d4ce0118ffb609847f53a2c9c6d14f" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 14: Particle Physics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.1, Page 522" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "e = 1.6e-019; # Energy equivalent of 1 eV, J\n", "h = 6.62e-034; # Planck's constant, Js\n", "c = 3.00e+008; # Speed of light in vacuum, m/s\n", "h_bar = h/(2*math.pi); # Reduced Planck's constant, Js\n", "R_N = 1e-015; # Range of nuclear force, m\n", "\n", "#Calculations\n", "# As delta_E*delta_t = h_bar/2 and delta_E = m_pion*c^2, solving for m_pion\n", "m_pion = h_bar*c/(2*R_N*e*1e+006); # Mass of the meson, MeV/c^2\n", "\n", "#Result\n", "print \"The estimated mass of meson from Heisenberg uncertainty principle = %.2f MeV/c^2\"%(m_pion)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The estimated mass of meson from Heisenberg uncertainty principle = 98.78 MeV/c^2\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.2, Page 526" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "e = 1.6e-019; # Energy equivalent of 1 eV, J\n", "h = 6.62e-034; # Planck's constant, Js\n", "c = 3.00e+008; # For simplicity assume speed of light to be unity\n", "h_bar = h/(2*math.pi); # Reduced Planck's constant, Js\n", "m_W = 80.4; # Energy equivalent of mass of W- particle, MeV\n", "\n", "#Calculations\n", "R_W = h_bar*c/(2*m_W*e*1e+009); # Range of W- particle, m\n", "delta_t = h_bar/(2*m_W*e*1e+009); # Time during which the energy conservation is violated, s\n", "\n", "#Results\n", "print \"The range of W- particle = %3.1e m\"%R_W\n", "print \"The time during which the energy conservation is violated = %1.0e s\"%delta_t" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The range of W- particle = 1.2e-18 m\n", "The time during which the energy conservation is violated = 4e-27 s\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.10, Page 548" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "m_p = 0.938; # Rest mass energy of the proton, GeV\n", "K = 6.4; # Kinetic energy of the proton projectile, GeV\n", "\n", "#Calculations\n", "E_cm = math.sqrt(2*m_p**2+2*m_p*K); # Centre of mass energy of proton collsion with the fixed proton target, GeV\n", "Q = 2*m_p - 4*m_p; # Q value of the reaction, GeV\n", "K_th = -3*Q; # Threshold kinetic energy required to produce the antiprotons, GeV\n", "K = 1000; # Kinetic energy of the protons in Tevatron, GeV\n", "E_cm_T = math.sqrt(2*m_p**2+2*m_p*K); # Centre-of-mass energy available for the reaction for the Tevatron, GeV\n", "\n", "#Results\n", "print \"The available energy in the center on mass = %4.2f GeV\"%E_cm\n", "print \"The threshold kinetic energy required to produce the antiprotons = %3.1f GeV\"%K_th\n", "print \"The centre-of-mass energy available for the reaction for the Tevatron = %d GeV\"%E_cm_T" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The available energy in the center on mass = 3.71 GeV\n", "The threshold kinetic energy required to produce the antiprotons = 5.6 GeV\n", "The centre-of-mass energy available for the reaction for the Tevatron = 43 GeV\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14.11, Page 550" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "m_p = 0.938; # Rest mass energy of the proton, GeV\n", "E_cm = 14000; # Centre of mass energy of colliding proton beams at LHC, GeV\n", "\n", "#Calculations\n", "# As E_cm = math.sqrt(2*m_p**2+2*m_p*K), solving for K\n", "K = E_cm**2*1e+009/(2*m_p); # Approx. kinetic energy of the protons needed for fixed-target experiment, eV \n", "\n", "#Result\n", "print \"The kinetic energy of the protons needed for fixed-target experiment = %3.1e eV\"%K" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The kinetic energy of the protons needed for fixed-target experiment = 1.0e+17 eV\n" ] } ], "prompt_number": 4 } ], "metadata": {} } ] }