{ "metadata": { "name": "", "signature": "sha256:ca0579d99dcaeb6306ba4006be3368ec17d38cc09b7c654030323e81a030169b" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 13: Nuclear Interactiions and Applications" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.1, Page 479" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "N_A = 6.02e+023; # Avogadro's number\n", "e = 1.6e-019; # Charge on an electron, C\n", "q = 2*e; # Charge on the alpha particle, C\n", "rho = 1.9; # Density of carbon target, atoms/cc\n", "N_M = 1; # Number of atoms per molecule\n", "M_g = 12; # Gram atomic mass of C12 isotope, g/mol\n", "sigma = 25e-031; # Total cross section for the reaction, Sq.m\n", "t = 1e-006; # Thickness of carbon target, m\n", "I_beam = 1e-006; # Beam current of akpha particle, ampere\n", "time = 3600; # Time for which the alpha particle beam is incident on the target, s\n", "\n", "#Calculations\n", "n = rho*N_A*N_M/M_g; # Number of nuclei per unit volume, per cc\n", "P = n*t*sigma*1e+006; # Probability of scattering of alpha particles\n", "N_I = I_beam*time/q; # Number of incident alpha particles\n", "N_n = N_I*P; # Number of neutrons produced in the reaction\n", "\n", "#Result\n", "print \"The number of neutrons produced in the reaction = %3.1e neutrons\"%N_n\n", "#answer differs due to rounding errors" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The number of neutrons produced in the reaction = 2.7e+09 neutrons\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.2, Page 480" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "sigma_n = 3; # Differential cross setion of production of the neutron, mb/sr\n", "sigma_p = 0.2; # Differential cross setion of production of the proton, mb/sr\n", "\n", "#Calculations\n", "# As P_n = sigma_n and P_p = sigma_p, so\n", "P_ratio = sigma_n/sigma_p; # The likelihood of a neutron production than a proton\n", "\n", "#Result\n", "print \"The likelihood of the neutron production than the proton = %2d\"%P_ratio" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The likelihood of the neutron production than the proton = 15\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.3, Page 481" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "u = 931.5; # Energy equivalent of 1 amu, MeV\n", "M_He = 4.002603; # Mass of He-4 nucleus, u\n", "M_N = 14.003074; # Mass of N-14 nucleus, u\n", "M_H = 1.007825; # Mass of hydrogen nucleus, u\n", "M_O = 16.999132; # Mass of O-16 nucleus, u\n", "K_alpha = 7.7; # The kinetic energy of alpha particle, MeV\n", "\n", "#Calculations\n", "Q = (M_He + M_N - M_H - M_O)*u; # The ground state Q-value of the nuclear reaction, MeV\n", "# As Q = K_p + K_O - K_alpha, solving for K_p + K_O\n", "K = Q + K_alpha; # The sum of kinetic energy of the products, MeV\n", "\n", "#Results\n", "print \"The ground state Q-value of the endoergic nuclear reaction = %5.3f MeV\"%Q\n", "print \"The sum of kinetic energy of the products = %3.1f MeV\"%K" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The ground state Q-value of the endoergic nuclear reaction = -1.192 MeV\n", "The sum of kinetic energy of the products = 6.5 MeV\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.4, Page 485" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "u = 931.5; # Energy equivalent of 1 amu, MeV\n", "K_lab = 14.6; # Kinetic energy of incident aplha particle, MeV\n", "Mx = 4; # Mass number of projectile nucleus\n", "MX = 12; # Mass number of target nucleus\n", "M_He = 4.002603; # Mass of He nucleus, u\n", "M_C = 12.0 # Mass of carbon nucleus, u\n", "M_O = 15.994915; # Mass of oxygen nucleus, u\n", "\n", "#Calculations\n", "K_cm = MX/(Mx + MX)*K_lab; # Kinetic energy available in the centre of mass, MeV\n", "E_O = (M_He + M_C - M_O)*u; # The ground state excitation energy of O-16, MeV\n", "E_final_O = K_cm + E_O; # The final excitation energy of O-16, MeV\n", "\n", "#Result\n", "print \"The final excitation energy of O-16 = %4.2f MeV\"%E_final_O" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The final excitation energy of O-16 = 7.16 MeV\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.5, Page 487" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "u = 931.5; # Energy equivalent of 1 amu, MeV\n", "M_U235 = 235.0439; # Mass of U-235 nucleus, u\n", "m_n = 1.0087; # Mass of a neutron, u\n", "M_Zr99 = 98.9165; # Mass of Zr-99 nucleus, u\n", "M_Te134 = 133.9115; # Mass of Te-134 nucleus, u\n", "\n", "#Calculations\n", "Q = (M_U235 + m_n - M_Zr99 - M_Te134 - 3*m_n)*u; # Q-value of the reaction, MeV\n", "\n", "#Result\n", "print \"The ground state Q-value of the induced fission reaction = %3d MeV\"%math.ceil(Q)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The ground state Q-value of the induced fission reaction = 185 MeV\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.6, Page 488" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "u = 931.5; # Energy equivalent of 1 amu, MeV\n", "m_n = 1.0087; # Mass of a neutron, u\n", "M_U235 = 235.0439; # Mass of U-235 nucleus, u\n", "M_U236 = 236.0456; # Mass of U-236 nucleus, u\n", "M_U238 = 238.0508; # Mass of U-238 nucleus, u\n", "M_U239 = 239.0543; # Mass of U-239 nucleus, u\n", "\n", "#Calculations\n", "E_U236 = (m_n + M_U235 - M_U236)*u; # Excitation energy of U-236 nucleus, MeV\n", "E_U239 = (m_n + M_U238 - M_U239)*u; # Excitation energy of U-239 nucleus, MeV\n", "\n", "#Results\n", "print \"The excitation energy of U-236 nucleus = %3.1f MeV\"%E_U236\n", "print \"The excitation energy of U-239 nucleus = %3.1f MeV\"%E_U239" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The excitation energy of U-236 nucleus = 6.5 MeV\n", "The excitation energy of U-239 nucleus = 4.8 MeV\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.7, Page 490" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "t = 30e-003; # Time during which the number of fissions is to be calculated, s\n", "E = 185; # Energy produced for each fission, MeV\n", "delta_t = 5e-006; # Average time during which a neutron is captured, s\n", "\n", "#Calculations\n", "fs = t/delta_t; # Number of fission cycles within 30 ms\n", "N = (1.01)**fs; # Number of fissions that occur in 30 ms\n", "E_total = N*E; # Total energy produced in 30 ms, MeV\n", "\n", "#Results\n", "print \"The total number of fissions that occur in %d ms = %3.1e\"%(t/1e-003, N)\n", "print \"The total energy produced = %3.1e MeV\"%E_total\n", "\n", "#Incorrect solution in textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The total number of fissions that occur in 30 ms = 8.5e+25\n", "The total energy produced = 1.6e+28 MeV\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.8, Page 500" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "u = 931.5; # Energy equivalent of 1 amu, MeV\n", "M_He = 4.002603; # Mass of He nucleus, u\n", "M_C = 12.0 # Mass of carbon nucleus, u\n", "M_O = 15.994915; # Mass of oxygen nucleus, u\n", "\n", "#Calculations\n", "Q = (M_He + M_C - M_O)*u; # Q-value of the reaction, MeV\n", "\n", "#Result\n", "print \"The energy expended in the fusion reaction inside supergiant star = %3.1f MeV\"%Q" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The energy expended in the fusion reaction inside supergiant star = 7.2 MeV\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.9, Page 502" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "k = 1.38e-023; # Boltzmann constant, J/K\n", "r = 3e-015; # Distance at which the nuclear force becomes effective, m\n", "e = 1.6e-019; # Charge on an electron, C\n", "K = 9e+009; # Coulomb's constant, N-Sq.m/C^2\n", "\n", "#Calculations\n", "V = K*e**2/r; # Coulomb potential energy, J\n", "# As V = 3/2*k*T, solving for T\n", "T = 2./3*V/k; # The ignition temperature needed for the fusion reaction between deuterium and a tritium, K\n", "\n", "#Result\n", "print \"The ignition temperature needed for the fusion reaction between a deuterium and a tritium = %3.1e K\"%T" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The ignition temperature needed for the fusion reaction between a deuterium and a tritium = 3.7e+09 K\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.10, Page 509" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "k = 1.38e-023; # Boltzmann constant, J/K\n", "e = 1.6e-019; # Energy equivalent of 1 eV, J\n", "h = 6.62e-034; # Planck's oconstant, Js\n", "m = 1.67e-027; # Mass of the neutron, kg\n", "lamda = 0.060e-009; # Wavelength of the neutron beam, m\n", "\n", "#Calculations\n", "p = h/lamda; # Momentum of the neutron from de-Broglie relation, kg-m/s\n", "K = p**2/(2*m*e); # Kinetic energy of the neutron needed to study atomic structure, eV\n", "# As K = 3/2*k*T, solving for T\n", "T = 2./3*K*e/k; # The temperature of the neutron needed to study atomic structure, K\n", "\n", "#Result\n", "print \"The energy and temperature of the neutron needed to study the atomic structure of solids = %4.2f eV and %4d K respectively\"%(K, T)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The energy and temperature of the neutron needed to study the atomic structure of solids = 0.23 eV and 1760 K respectively\n" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }