{ "metadata": { "name": "", "signature": "sha256:0de7fdc3a9080098412999030f35bc2fb5913b94ca2786fe525f30a16f00b7a8" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 10: Molecules, Lasers and Solids" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.1, Page 342" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "m = 2.33e-026; # Mass of a nitrogen atom, kg\n", "R = 1.1e-010; # Interatomic separation between two nitrogen atoms, m\n", "h = 6.626e-034; # Planck's constant, Js\n", "e = 1.6e-019; # Energy equivalent of 1 eV, J\n", "\n", "#Calculations\n", "h_bar = h/(2*math.pi); # Reduced Planck's constant, Js\n", "I = m*R**2/2; # Momemt of rotational inertia of nitrogen gas molecule, kg-Sq.m\n", "l = 1; # Rotational angular momentum quantum number\n", "E_rot = h_bar**2*l*(l+1)/(2*I); # The energy for lowest rotational state of the nitrogen molecule, J\n", "\n", "#Result\n", "print \"The energy for lowest rotational state of the nitrogen molecule = %4.2e eV\"%(E_rot/e)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The energy for lowest rotational state of the nitrogen molecule = 4.93e-04 eV\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.2, Page 343" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "h = 6.626e-034; # Planck's constant, Js\n", "e = 1.6e-019; # Energy equivalent of 1 eV, J\n", "h_bar = h/(2*math.pi); # Reduced Planck's constant, Js\n", "k = 1.38e-023; # Boltzmann constant, J/K\n", "u = 1.67e-027; # Mass equivalent of 1 amu, kg\n", "\n", "#Calculations\n", "m1 = 34.97*u; # Atomic mass of chlorine atom, kg\n", "m2 = 1.008*u; # Atomic mass of hydrogen atom, kg\n", "mu = m1*m2/(m1 + m2); # Reduced mass of the HCl system, kg\n", "delta_E = 0.36; # Spacing between vibrational energy levels of the HCl molecule, eV\n", "omega = delta_E*e/h_bar; # Angular frequency of vibration, rad/s\n", "kapa = mu*omega**2; # Effective force constant for HCl molecule, N/m\n", "T = delta_E*e/k; # Classical temperature associated with the rotational energy spacing, K\n", "\n", "#Results\n", "print \"The effective force constant for HCl molecule = %3d N/m\"%(math.ceil(kapa))\n", "print \"The classical temperature associated with the rotational energy spacing = %4d K\"%(math.ceil(T))\n", "#answers differ due to rounding errors" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The effective force constant for HCl molecule = 489 N/m\n", "The classical temperature associated with the rotational energy spacing = 4174 K\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.4, Page 358" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "e = 1.602e-019; # Charge on an electron, C\n", "N_A = 6.023e+023; # Avogadro's number\n", "alpha = 1.7476; # Madelung constant\n", "E = -764.4e+003; # Dissociation energy of NaCl molecule, J/mol\n", "V = E/N_A; # Repulsive potential energy, J\n", "k = 8.988e+009; # Coulomb's constant, N-Sq.m/C^2\n", "r0 = 0.282e-009; # Equilibrium separation for nearest neighbour in NaCl, m\n", "\n", "#Calculations\n", "rho = r0*(1+r0*V/(k*alpha*e**2)); # Range parameter for NaCl, nm\n", "\n", "#Result\n", "print \"The range parameter for NaCl = %6.4f nm\"%(rho/1e-009)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The range parameter for NaCl = 0.0316 nm\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.5, Page 365" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "e = 1.602e-019; # Charge on an electron, C\n", "r = 5.29e-011; # Orbital radius of electron equal to Bohr radius, m\n", "B = 2.0; # Applied magnetic field, T\n", "m = 9.11e-031; # Mass of an electron, kg\n", "\n", "#Calculations\n", "delta_mu = e**2*r**2*B/(4*m); # Induced diamagnetic moment in the atom, J/T\n", "\n", "#Result\n", "print \"The induced diamagnetic moment in the atom = %3.1e J/T\"%delta_mu" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The induced diamagnetic moment in the atom = 3.9e-29 J/T\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.6, Page 366" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "mu_B = 9.27e-024; # Bohr's magneton, J/T\n", "B = 0.50; # Applied magnetic field, T\n", "k = 1.38e-023; # Boltzmann constant, J/K\n", "\n", "#Calculations&Results\n", "T = 10*mu_B*B/k; # Temperature at which mu*B = 0.1k*T, K\n", "b_muB = mu_B*B/(k*T);\n", "ratio = b_muB/math.tanh(b_muB); # Ratio of b_muB and tanh(b_muB)\n", "if (ratio - 1) < 0.01:\n", " print \"The value of T = %4.2f K is suitable as a classical temperature.\"%T\n", "else:\n", " print \"The value of T = %4.2f K is not suitable as a classical temperature.\"%T\n", "\n", "# For higher temperature\n", "T = 100; # Given temperature\n", "b_muB = mu_B*B/(k*T);\n", "ratio = b_muB/math.tanh(b_muB); # Ratio of b_muB and tanh(b_muB)\n", "if (ratio - 1) < 0.001:\n", " print \"At the value of T = %4.2f K, the approximation is an excellent one.\"%T\n", "else:\n", " print \"At the value of T = %4.2f K, the approximation is not an excellent.\"%T" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of T = 3.36 K is suitable as a classical temperature.\n", "At the value of T = 100.00 K, the approximation is an excellent one.\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.7, Page 374" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "k = 1.38e-023; # Boltzmann constant, J/K\n", "e = 1.602e-019; # Energy equivalent of 1 eV, J\n", "h = 6.62e-034; # Planck's constant, Js\n", "c = 3.00e+008; # Speed of light, m/s\n", "T_c = 9.25; # Critical temperature for niobium, K\n", "\n", "#Calculations\n", "E_g = 3.54*k*T_c; # Energy gap for niobium from BCS theory, J\n", "lamda = h*c/E_g; # Minimum photon wavelength needed to break the Cooper pair, m\n", "\n", "#Results\n", "print \"The energy gap for niobium = %4.2f meV\"%(E_g/(e*1e-003))\n", "print \"The minimum photon wavelength needed to break the Cooper pair = %4.2e m\"%lamda" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The energy gap for niobium = 2.82 meV\n", "The minimum photon wavelength needed to break the Cooper pair = 4.39e-04 m\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.8, Page 382" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "r = 1e-002; # Radius of the loop, m\n", "phi0 = 2.068e-015; # Magnetic flux penetrating to the loop, T-Sq.m\n", "\n", "#Calculations\n", "A = math.pi*r**2; # Area of the loop, Sq.m\n", "B = phi0/A; # Magnetic field perpendicular to the loop, T\n", "\n", "#Result\n", "print \"The magnetic field perpendicular to the loop = %4.2e T\"%B" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The magnetic field perpendicular to the loop = 6.58e-12 T\n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }