{ "metadata": { "name": "", "signature": "sha256:90fc77a4706b2ba6c4e383a2e0d80f0a572a43d837aa619ea730d827f91d4409" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "3: The Atomic Structure" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.1, Page number 25" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Z=79; #atomic number of gold\n", "e=1.6*10**-19; #electron charge(C)\n", "Eo=8.854*10**-12; #absolute permitivity of free space(F/m)\n", "K=7.68*1.6*10**-13; #kinectic energy(J)\n", "\n", "#calculation\n", "D=(2*Z*e**2)/(4*math.pi*Eo*K); #closest distance of approach(m)\n", "\n", "#Result\n", "print \"The closest distance of approach is\",round(D/1e-14,2),\"*10**-14 m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The closest distance of approach is 2.96 *10**-14 m\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.2, Page number 28" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Z=1; #atomic number of hydrogen\n", "e=1.6*10**-19; #electron charge(C)\n", "h=6.625*10**-34; #plank's constant(J-s)\n", "m=9.1*10**-31; #mass of an electron(kg)\n", "Eo=8.854*10**-12; #absolute permitivity of free space(F/m)\n", "c=3*10**8; #speed of light(m/s)\n", "n=1; #ground state\n", "\n", "#calculation\n", "v=9*10**9*(2*math.pi*Z*e**2)/(n*h); #velocity of ground state(m/s)\n", "r=(Eo*n**2*h**2)/(math.pi*m*e**2); #radius of Bohr orbit in ground state(m)\n", "t=(2*math.pi*r)/v; #time taken by electron to traverse the bohr first orbit(s)\n", "R=(m*(e**4))/(8*(Eo**2)*(h**3)*c); #Rhydberg contstant(m^-1)\n", "#v=v*10**-5;\n", "#v=math.ceil(v*10**3)/10**3; #rounding off to 3 decimals\n", "#r=r*10**10;\n", "#R=R/10**6;\n", "\n", "#Result\n", "print \"velocity of ground state\",round(v/1e+5,2),\"*10^5 m/s\"\n", "print \"radius of Bohr orbit in ground state\",round(r/1e-10,2),\"*10^-10 m\"\n", "print \"time taken by electron to traverse the bohr first orbit\",round(t/1e-16,2),\"micro s\"\n", "print \"Rhydberg constant is\",round(R/1e+6,3),\"*10**6 m^-1\"\n", "print \"answer for Rhydberg contstant given in the book differs in the 2nd decimal point\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "velocity of ground state 21.85 *10^5 m/s\n", "radius of Bohr orbit in ground state 0.53 *10^-10 m\n", "time taken by electron to traverse the bohr first orbit 1.53 micro s\n", "Rhydberg constant is 10.901 *10**6 m^-1\n", "answer for Rhydberg contstant given in the book differs in the 2nd decimal point\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.3, Page number 29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "B=2.179*10**-16; #constant(J)\n", "h=6.6*10**-34; #plank's constant(J-s)\n", "\n", "#calculation\n", "E3=-B/3**2; #energy in 3rd orbit(J)\n", "E2=-B/2**2; #energy in 2nd orbit(J) \n", "f=(E3-E2)/h; #frequency of radiation(Hz) \n", "\n", "#Result\n", "print \"frequency of radiation\",round(f/1e+16,1),\"*10**16 Hz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "frequency of radiation 4.6 *10**16 Hz\n" ] } ], "prompt_number": 35 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.4, Page number 29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Z=1; #atomic number of hydrogen\n", "e=1.6*10**-19; #electron charge(C)\n", "h=6.625*10**-34; #plank's constant(J-s)\n", "m=9.1*10**-31; #mass of an electron(kg)\n", "Eo=8.854*10**-12; #absolute permitivity of free space(F/m)\n", "n=1; #ground state\n", "\n", "#Calculation\n", "f=(m*Z**2*e**4)/(4*Eo**2*h**3); #frequency(Hz)\n", "\n", "#Result\n", "print \"the frequency is\",round(f/1e+15,2),\"*10**15 Hz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the frequency is 6.54 *10**15 Hz\n" ] } ], "prompt_number": 38 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.5, Page number 30" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Z=1;\n", "n=1;\n", "e=1.6*10**-19; #the charge on electron(C)\n", "h=6.62*10**-34; #Plank's constant\n", "Eo=8.854*10**-12; #absolute permitivity of free space(F/m)\n", "m=9.1*10**-31; #mass of electron(kg)\n", "\n", "#calculation\n", "v=Z*(e**2)/(2*Eo*n*h); #velocity(m/s)\n", "E=-m*(Z**2)*(e**4)/(8*(Eo*n*h)**2); #energy of hydrogen atom(J)\n", "f=m*(Z**2)*(e**4)/(4*(Eo**2)*(n*h)**3); #frequecy(Hz)\n", "\n", "#Result\n", "print \"velocity is\",round(v*10**-6,2),\"*10**6 m/s\"\n", "print \"energy of hydrogen atom\",round(E*10**19,1),\"*10**-19 J\"\n", "print \"frequecy\",round(f/1e+15,1),\"*10**15 Hz\"\n", "print \"answer for velocity given in the book is wrong\"\n", "print \"answer for frequency given in the book varies due to rounding off errors\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "velocity is 2.18 *10**6 m/s\n", "energy of hydrogen atom -21.7 *10**-19 J\n", "frequecy 6.6 *10**15 Hz\n", "answer for velocity given in the book is wrong\n", "answer for frequency given in the book varies due to rounding off errors\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.8, Page number 38" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "h=6.625*10**-34; #Plank's constant\n", "c=3*10**8; #speed of light(m/s)\n", "E1=10.2; #energy(eV)\n", "E2=12.09; #energy(eV)\n", "e=1.6*10**-19; #the charge on electron(C)\n", "\n", "#calcualtion\n", "#principal quantum numbers are 2 & 3 respectively\n", "lamda1=c*h/(E1*e)*10**10; #wavelength for E1(angstrom)\n", "lamda2=c*h/(E2*e)*10**10; #wavelength for E2(angstrom)\n", "\n", "#Result\n", "print \"wavelength for 10.2 eV is\",int(lamda1),\"angstrom\"\n", "print \"wavelength for 12.09 eV is\",int(lamda2),\"angstrom\"\n", "print \"answers given in the book differ due to rounding off errors\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "wavelength for 10.2 eV is 1217 angstrom\n", "wavelength for 12.09 eV is 1027 angstrom\n", "answers given in the book differ due to rounding off errors\n" ] } ], "prompt_number": 58 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.9, Page number 39" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "R=10967700; #Rydberg constant(m^-1)\n", "\n", "#calculation\n", "long_lamda=4/(3*R); #as n1=1 and n2=2\n", "long_lamda=long_lamda*10**10; #long wavelength(angstrom)\n", "short_lamda=1/R; #as n1=1 and n2=infinity\n", "short_lamda=short_lamda*10**10; #long wavelength(angstrom)\n", "\n", "#Result\n", "print \"Long wavelength is\",round(long_lamda),\"angstrom\"\n", "print \"Short wavelength is\",round(short_lamda),\"angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Long wavelength is 1216.0 angstrom\n", "Short wavelength is 912.0 angstrom\n" ] } ], "prompt_number": 62 } ], "metadata": {} } ] }