{ "metadata": { "name": "", "signature": "sha256:bb88588092f5e168d4a1c62bb7bb87ac343b1c2045bd4d31cd2391090ea3e567" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "7: Classification of Solids" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 7.1, Page number 138" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "W=11000; #wavelength(angstrom)\n", "\n", "#Calculation\n", "Eg=W/12400; #energy gap(eV)\n", "\n", "#Result\n", "print \"Energy Gap is\",round(Eg,3),\"eV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Energy Gap is 0.887 eV\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 7.2, Page number 138" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "p=1.7*10**-6; #resistivity(ohm-cm)\n", "d=8.96; #density(g/cc)\n", "W=63.5; #atomic weight(gm)\n", "Na=6.02*10**23; #Avagadro number(per g-mol)\n", "e=1.6*10**-19; #the charge on electron(C)\n", "\n", "#Calculation\n", "n=8.96*Na/W; #number of Cu atoms per cc\n", "mewe=1/(p*e*n); #mobility of electrons(cm^2/V-s)\n", "\n", "#Result\n", "print \"mobility of electrons is\",round(mewe,1),\"cm^2/V-s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "mobility of electrons is 43.3 cm^2/V-s\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 7.3, Page number 139" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "d1=2.5*10**19; #density of charge carriers(per m^3)\n", "d2=4.2*10**28; #density of germanium atoms(per m^3)\n", "mewe=0.36; #mobilty of electrons(m^2/V-s)\n", "Na=6.02*10**23; #Avgraodo no.(per g-mol)\n", "e=1.6*10**-19; #the charge on electron(C)\n", "\n", "#Calculation\n", "Nd=d2/10**6; #density of added impurity atoms(atoms/m^3)\n", "sigma_n=Nd*e*mewe; #conductivity(mho/m)\n", "rho_n=1/sigma_n; #resistivity of doped germanium(ohm-m)\n", "\n", "#Result\n", "print \"resistivity of doped germanium is\",round(rho_n*10**3,3),\"*10**-3 ohm-m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "resistivity of doped germanium is 0.413 *10**-3 ohm-m\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 7.4, Page number 139" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Eg=0.75; #energy gap(eV)\n", "\n", "#Calculation\n", "lamda=12400/Eg; #wavelength(angstrom)\n", "\n", "#Result\n", "print \"wavelength is\",int(lamda),\"angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "wavelength is 16533 angstrom\n" ] } ], "prompt_number": 12 } ], "metadata": {} } ] }