{ "metadata": { "name": "", "signature": "sha256:8d579c32fbc82bfc0d050265719851f3d1a9f6f9fcc17df43ae5b1c38cc41c26" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "2: The Electron" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 2.1, Page number 18" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "E=2400; #electric field intensity(V/m)\n", "V=90; #potential difference(V)\n", "e=1.6*10**-19; #the charge on electron(C)\n", "m=9.12*10**-31; #mass of electron(kg)\n", "\n", "#Calculation\n", "F=e*E; #force on electron(N)\n", "a=F/m; #acceleration(m/s^2) \n", "KE=e*V; #Kinetic Energy of particle(J) \n", "v=math.sqrt(2*KE/m); #velocity of the electron(m/s)\n", "v=v*10**-6;\n", "v=math.ceil(v*10**2)/10**2; #rounding off to 2 decimals\n", "\n", "#Result\n", "print \"The force on electron is\",F,\"N\"\n", "print \"Its acceleration is\",round(a/1e+14,2),\"*10**14 m/s^2\"\n", "print \"The Kinetic Energy of particle is\",KE,\"J\"\n", "print \"The velocity of the electron\",v,\"*10**6 m/s\"\n", "print \"answers for acceleration and velocity given in the book varies due to rounding off errors\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The force on electron is 3.84e-16 N\n", "Its acceleration is 4.21 *10**14 m/s^2\n", "The Kinetic Energy of particle is 1.44e-17 J\n", "The velocity of the electron 5.62 *10**6 m/s\n", "answers for acceleration and velocity given in the book varies due to rounding off errors\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 2.2, Page number 18" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "V=900; #potential difference(V)\n", "B=0.01; #uniform magnetic field(Wb/m^2)\n", "em=1.76*10**11; #value of e/m(C/kg)\n", "\n", "#calculation\n", "v=math.sqrt(2*em*V); #linear velocity of electron(m/s)\n", "R=v/(em*B); #radius of the circular path(m) \n", "R=math.ceil(R*10**3)/10**3; #rounding off to 3 decimals\n", "v=v*10**-7;\n", "v=math.ceil(v*10**2)/10**2; #rounding off to 2 decimals\n", "\n", "#Result\n", "print \"The linear velocity of electron is\",v,\"*10**7 m/s\"\n", "print \"The radius of the circular path is\",R,\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The linear velocity of electron is 1.78 *10**7 m/s\n", "The radius of the circular path is 0.011 m\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 2.3, Page number 18" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "d=6*10**-3; #distance between plates(m)\n", "V=900; #potential difference(V)\n", "B=0.5; #uniform magnetic field(Wb/m^2)\n", "Q=1.6*10**-19; #the charge on electron(C)\n", "R=10.6*10**-2; #circular track radius(m)\n", "\n", "#calculation\n", "v=V/(B*d); #velocity(m/s)\n", "m=R*Q*B/v; #mass of particle(kg)\n", "\n", "#Result\n", "print \"The mass of particle\",round(m/1e-26,3),\"*10**-26 kg\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The mass of particle 2.827 *10**-26 kg\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 2.4, Page number 19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "V=6920; #potential difference(V)\n", "d=1.3*10**-2; #distance between(m)\n", "v=1.9*10**-4; #velocity(m/s)\n", "p=0.9*10**3; #density of oil(kg/m^3)\n", "n=1.81*10**-5; #coefficient of viscosity(N-s/m^2)\n", "g=9.81; #accelaration due to gravity(m/s^2)\n", "\n", "#calculation\n", "a=math.sqrt((9*n*v)/(2*g*p)); #radius of the drop(m) \n", "E=V/d; #electric field(V/m)\n", "Q=4*math.pi*(a**3)*p*g/(3*E); #value of charge on oil drop(C)\n", "\n", "#Result\n", "print \"The radius of the drop is\",round(a/1e-6,2),\"micro m\"\n", "print \"The value of charge on oil drop is\",round(Q/1e-19,3),\"*10^-19 C\"\n", "print \"answers given in the book are wrong\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The radius of the drop is 1.32 micro m\n", "The value of charge on oil drop is 1.612 *10^-19 C\n", "answers given in the book are wrong\n" ] } ], "prompt_number": 2 } ], "metadata": {} } ] }