{ "metadata": { "name": "", "signature": "sha256:1e02050388cdd15ca19e058c38c307c0fd0b145ef71769674c045940ea70b08b" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "7: Atomic physics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 7.1, Page number 113" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "mewB=9.27*10**-24;\n", "B=3; #magnetic field(T)\n", "e=1.6*10**-19; #conversion factor from J to eV\n", "\n", "#Calculation\n", "E=2*mewB*B/e; #energy difference(eV)\n", "\n", "#Result\n", "print \"energy difference is\",round(E*10**4,2),\"*10**-4 eV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "energy difference is 3.48 *10**-4 eV\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 7.3, Page number 118" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "l=2;\n", "s=1/2;\n", "j1=2+(1/2);\n", "j2=2-(1/2);\n", "\n", "#Calculation\n", "L=math.sqrt(l*(l+1)); #value of L(hbar)\n", "S=math.sqrt(s*(s+1)); #value of S(hbar)\n", "J1=math.sqrt(j1*(j1+1)); #value of J for D5/2 state(hbar)\n", "J2=math.sqrt(j2*(j2+1)); #value of J for D3/2 state(hbar)\n", "costheta1=((j1*(j1+1))-(l*(l+1))-(s*(s+1)))/(2*L*S);\n", "theta1=math.acos(costheta1); #angle between L and S for D5/2(radian)\n", "theta1=theta1*180/math.pi; #angle between L and S for D5/2(degrees)\n", "costheta2=((j2*(j2+1))-(l*(l+1))-(s*(s+1)))/(2*L*S);\n", "theta2=math.acos(costheta2); #angle between L and S for D3/2(radian)\n", "theta2=theta2*180/math.pi; #angle between L and S for D3/2(degrees)\n", "\n", "#Result\n", "print \"value of L is\",round(L,3),\"hbar\"\n", "print \"value of S is\",round(S,3),\"hbar\"\n", "print \"value of J for D5/2 state is\",round(J1,3),\"hbar\"\n", "print \"value of J for D3/2 state is\",round(J2,3),\"hbar\"\n", "print \"angle between L and S for D5/2 is\",round(theta1,2),\"degrees\"\n", "print \"angle between L and S for D3/2 is\",int(theta2),\"degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "value of L is 2.449 hbar\n", "value of S is 0.866 hbar\n", "value of J for D5/2 state is 2.958 hbar\n", "value of J for D3/2 state is 1.936 hbar\n", "angle between L and S for D5/2 is 61.87 degrees\n", "angle between L and S for D3/2 is 135 degrees\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 7.10, Page number 136" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "S=1;\n", "L=1; \n", "J=1;\n", "\n", "#Calculation\n", "a=L*(L+1)-(L*(L+1));\n", "g1=1+(a/(2*L*(L+1))); #lande's g-factor for pure orbital angular momentum\n", "b=(S*(S+1)+(S*(S+1)))/(2*S*(S+1)); #lande's g-factor for pure spin angular momentum\n", "g2=1+b; #lande's g-factor for pure spin angular momentum\n", "c=J*(J+1)+(S*(S+1))-(L*(L+1));\n", "g3=1+(c/(2*J*(J+1))); #lande's g-factor for state 3P1\n", "\n", "#Result\n", "print \"lande's g-factor for pure orbital angular momentum is\",g1\n", "print \"ande's g-factor for pure spin angular momentum is\",g2\n", "print \"lande's g-factor for state 3P1 is\",g3" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "lande's g-factor for pure orbital angular momentum is 1.0\n", "ande's g-factor for pure spin angular momentum is 2.0\n", "lande's g-factor for state 3P1 is 1.5\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 7.12, Page number 141" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "EKalpha=21.99; #energy in silver(keV)\n", "EKbita=25.145; #energy in silver(keV)\n", "E=-25.514; #energy of n=1 state(keV)\n", " \n", "#Calculation\n", "ELalpha=EKbita-EKalpha; #energy of L alpha X ray(keV)\n", "E2=-E-EKalpha; #binding energy of L electron(keV)\n", "\n", "#Result\n", "print \"energy of L alpha X ray is\",ELalpha,\"keV\"\n", "print \"binding energy of L electron is\",E2,\"keV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "energy of L alpha X ray is 3.155 keV\n", "binding energy of L electron is 3.524 keV\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 7.13, Page number 141" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "h=6.626*10**-34; #planck's constant(Js)\n", "c=3*10**8; #velocity of light(m/sec)\n", "Z=11; #atomic number\n", "R=1.097*10**7; #value of R(per m)\n", "\n", "#Calculation\n", "E=(3*h*c*R*(Z-1)**2)/4; #energy of k aplha X-ray(keV)\n", "\n", "#Result\n", "print \"energy of k aplha X-ray is\",round(E*10**16,2),\"*10**-16 keV\"\n", "print \"answer given in the book is wrong\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "energy of k aplha X-ray is 1.64 *10**-16 keV\n", "answer given in the book is wrong\n" ] } ], "prompt_number": 12 } ], "metadata": {} } ] }