{ "metadata": { "name": "", "signature": "sha256:de4c224e2d9bad9e810e24de23e4ee016e17fa0ec4d45805b35802744f1cd3b7" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "10: Crystal structure and bonding" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 10.5, Page number 213" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "h1=1;\n", "k1=0;\n", "l1=0; #for (100) plane\n", "h2=1;\n", "k2=1;\n", "l2=1; #for (111) plane\n", "a=1; #assume\n", "\n", "#Calculation\n", "d100=a/math.sqrt(h1**2+k1**2+l1**2); #spacing between (100) plane\n", "d111=a/math.sqrt(h2**2+k2**2+l2**2); #spacing between (111) plane\n", "\n", "#Result\n", "print \"spacing between (100) plane is\",d100,\"a\"\n", "print \"spacing between (111) plane is\",round(d111,3),\"a\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "spacing between (100) plane is 1.0 a\n", "spacing between (111) plane is 0.577 a\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 10.6, Page number 213" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "r=0.152; #atomic radius(nm)\n", "h1=2;\n", "k1=3;\n", "l1=1; #for plane (231)\n", "h2=1;\n", "k2=1;\n", "l2=0; #for plane (110)\n", "\n", "#Calculation\n", "a=4*r/math.sqrt(2);\n", "d231=a/math.sqrt(h1**2+k1**2+l1**2); #spacing between (231) plane(nm) \n", "d110=a/math.sqrt(h2**2+k2**2+l2**2); #spacing between (110) plane(nm)\n", "\n", "#Result\n", "print \"spacing between (231) plane is\",round(d231,4),\"nm\"\n", "print \"spacing between (110) plane is\",d110,\"nm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "spacing between (231) plane is 0.1149 nm\n", "spacing between (110) plane is 0.304 nm\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 10.7, Page number 213" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "h=1;\n", "k=0;\n", "l=2; #for plane (102)\n", "a=0.424; #edge(nm)\n", "\n", "#Calculation\n", "d102=a/math.sqrt(h**2+k**2+l**2); #interplanar spacing(nm)\n", "\n", "#Result\n", "print \"interplanar spacing is\",round(d102,4),\"nm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "interplanar spacing is 0.1896 nm\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 10.8, Page number 214" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "a=3.2*10**-10; #edge(m)\n", "rho=11.36*10**3; #density(kg/m**3)\n", "N=6.023*10**26; #avagadro number(per k mol)\n", "M=207.2; #atomic weight\n", "\n", "#Calculation\n", "n=a**3*rho*N/M; #number of atoms per unit cell\n", "\n", "#Result\n", "print \"number of atoms per unit cell is\",int(n)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "number of atoms per unit cell is 1\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 10.9, Page number 220" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "d=2.51*10**-10; #spacing between planes(m)\n", "theta=9; #glancing angle(degrees)\n", "\n", "#Calculation\n", "theta=theta*math.pi/180; #glancing angle(radian)\n", "lamda=2*d*math.sin(theta); #wavelength(m)\n", "a=lamda/2.51;\n", "theta2=math.asin(a); #glancing angle for 2nd order diffraction(radian)\n", "theta2=2*theta*180/math.pi; #glancing angle for 2nd order diffraction(degrees)\n", "\n", "#Result\n", "print \"wavelength of X ray is\",round(lamda*10**10,4),\"angstrom\"\n", "print \"glancing angle for 2nd order diffraction is\",theta2,\"degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "wavelength of X ray is 0.7853 angstrom\n", "glancing angle for 2nd order diffraction is 18.0 degrees\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 10.10, Page number 220" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "a=5*10**-10; #lattice parameter(m)\n", "n=1;\n", "lamda=1.4*10**-10; #wavelength(m)\n", "h=1;\n", "k=1;\n", "l=1; #for plane (111)\n", "\n", "#Calculation\n", "d111=a/math.sqrt(h**2+k**2+l**2);\n", "b=n*lamda/(2*d111);\n", "theta111=math.asin(b); #incident angle(radian)\n", "theta111=theta111*180/math.pi; #incident angle(degrees)\n", "\n", "#Result\n", "print \"incident angle is\",int(theta111),\"degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "incident angle is 14 degrees\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 10.11, Page number 221" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "H=6.626*10**-34; #planck's constant(Js)\n", "m=9.1*10**-31; #mass of electron(kg)\n", "e=1.6*10**-19; #conversion factor from J to eV\n", "V=120; #potential(V)\n", "theta=22; #angle(degrees)\n", "theta=theta*math.pi/180; #angle(radian)\n", "h=1;\n", "k=1;\n", "l=1; #for plane (111)\n", "\n", "#Calculation\n", "x=(2*m*e*V)**(1/2); \n", "lamda=H/x; #wavelength(m)\n", "d111=lamda*10**10/(2*math.sin(theta));\n", "a=math.sqrt(h**2+k**2+l**2)*d111; #lattice parameter(angstrom)\n", "\n", "#Result\n", "print \"lattice parameter is\",round(a,2),\"angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "lattice parameter is 2.59 angstrom\n" ] } ], "prompt_number": 49 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 10.12, Page number 224" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "e=1.6*10**-19; #conversion factor from J to eV\n", "epsilon0=8.85*10**-12;\n", "r0=0.32*10**-9; #distance(m)\n", "\n", "#Calculation\n", "V=-e/(4*math.pi*epsilon0*r0); #potential energy(eV)\n", "\n", "#Result\n", "print \"potential energy is\",round(V,3),\"eV\"\n", "print \"answer varies due to rounding off errors\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "potential energy is -4.496 eV\n", "answer varies due to rounding off errors\n" ] } ], "prompt_number": 52 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 10.13, Page number 224" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "e=1.6*10**-19; #conversion factor from J to eV\n", "epsilon0=8.85*10**-12;\n", "r0=0.31*10**-9; #distance(m)\n", "n=9;\n", "alpha=1.748; \n", "Ie=5; #ionisation energy(eV)\n", "ea=-3.61; #electron affinity(eV)\n", "\n", "#Calculation\n", "a=1-(1/n);\n", "Vr0=-alpha*e**2*a/(4*math.pi*epsilon0*r0); #energy(J)\n", "Vr0=Vr0/e; #cohesive energy(eV)\n", "Vr0i=Vr0/2; #contribution per ion to cohesive energy(eV)\n", "Ee=Ie+ea; #electron transfer energy(eV)\n", "Vr0i2=Ee/2; #contribution per ion to cohesive energy(eV)\n", "CE=Vr0i+Vr0i2; #cohesive energy per atom(eV)\n", "\n", "#Result\n", "print \"cohesive energy per atom is\",round(CE,4),\"eV\"\n", "print \"answer varies due to rounding off errors\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "cohesive energy per atom is -2.9105 eV\n", "answer varies due to rounding off errors\n" ] } ], "prompt_number": 58 } ], "metadata": {} } ] }