{
 "metadata": {
  "name": "",
  "signature": "sha256:70cab6f9b725623fc2451b245c5190bb3397c02f8debec03cc8b79cdd3e4b714"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "1: Electric and Magnetic Fields"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 1.1, Page number 4"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "q1=3.2*10**-19;\n",
      "q2=q1;                #q1 and q2 are the values of charge on alpha-particle(C)\n",
      "d=10**-13;            #distance between two alpha-particles(m)\n",
      "m1=6.68*10**-27;\n",
      "m2=m1;          #m1 and m2 are masses of alpha-particles(kg)\n",
      "G=6.67*10**-11;       #Gravitational constant(Nm^2/kg^2)\n",
      "\n",
      "#Calculation\n",
      "F1=(9*10**9)*(q1*q2)/(d**2);       #calculation of electrostatic force(N)\n",
      "F2=G*(m1*m2)/(d**2);        #calculation of electrostatic force(N)\n",
      "F1=math.ceil(F1*10**4)/10**4;   #rounding off to 4 decimals\n",
      "F1 = F1*10**2;\n",
      "\n",
      "#Result\n",
      "print \"The electrosatic force is\",F1,\"*10**-2 N\"\n",
      "print \"The gravitational force is\",round(F2/1e-37,3),\"*10**-37 N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The electrosatic force is 9.22 *10**-2 N\n",
        "The gravitational force is 2.976 *10**-37 N\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 1.2, Page number 4"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "m=9.1*10**-31;       #mass of elctron(kg)\n",
      "q=1.6*10**-19;       #charge on electron(C)\n",
      "g=9.81;           #acceleration due to gravity(m/s^2)\n",
      "\n",
      "#Calculation\n",
      "Fg=m*g;                #gravitational force(N)\n",
      "d=math.sqrt((9*10**9*q**2)/Fg);            #equating gravitational force with electrosatic force(m)\n",
      "d=math.ceil(d*10**3)/10**3;            #rounding off to 4 decimals\n",
      "\n",
      "#Result\n",
      "print \"The distance of separation is\",d,\"m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The distance of separation is 5.081 m\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 1.3, Page number 4"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "d=0.02;          #distance between plates(m)\n",
      "V=400;           #potential differnce of plates(V)\n",
      "q=1.6*10**-19;         #charge on a proton(C)\n",
      "\n",
      "#Calculation\n",
      "E=V/d;       #electric field intensity between plates(V/m)\n",
      "F=q*E;       #electrostatic force on oil drop(N)\n",
      "\n",
      "#Result\n",
      "print \"The electric field intensity between plates is\",E,\"V/m\"\n",
      "print \"The force on proton is\",F,\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The electric field intensity between plates is 20000.0 V/m\n",
        "The force on proton is 3.2e-15 N\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 1.4, Page number 4"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "d=0.02;           #distance between plates(m)\n",
      "q=1.6*10**-19;       #charge on oil drop(C)\n",
      "V=6000;              #potential differnce of plates(V)\n",
      "g=9.81;              #acceleration due to gravity(m/s^2)\n",
      "\n",
      "#Calculation\n",
      "E=V/d;       #electric field intensity between plates(V/m)\n",
      "F=q*E;       #electrostatic force on oil drop(N)\n",
      "m=F/g;       #equating the weight of oil drop to the electrostatic force on it(kg)\n",
      "\n",
      "#Result\n",
      "print \"The mass of oil drop is\",round(m/1e-15,3),\"*10**-15 kg\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The mass of oil drop is 4.893 *10**-15 kg\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 1.5, Page number 5"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "V=150;             #potential difference between anode and cathode(V)\n",
      "m=9.31*10**-31;    #mass of an electron(kg)\n",
      "q=1.6*10**-19;     #charge on an electron(C)\n",
      "\n",
      "#Calculation\n",
      "E=q*V;            #energy gained by electron during speeding from cathode to anode(J)\n",
      "vel=math.sqrt(E*2/m);    #equating with kinetic energy of electron(m/s)\n",
      "vel=vel*10**-6;\n",
      "vel=math.ceil(vel*10)/10;   #rounding off to 1 decimal\n",
      "\n",
      "#Result\n",
      "print \"The velocity is\",vel,\"*10**6 m/s\"\n",
      "print \"answer in the book is wrong by 1 decimal\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The velocity is 7.2 *10**6 m/s\n",
        "answer in the book is wrong by 1 decimal\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 1.6, Page number 5"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "V=5*10**6;       #potential differnce through which alpha-particle is accelerated(V)\n",
      "e=1.6*10**-19;         #charge on electron(C)\n",
      "\n",
      "#Calculation\n",
      "E1=2*V;      #electronic charge on alpha-particle(eV)\n",
      "E2=E1/10**6;      #energy(MeV)\n",
      "E3=E1*e;         #energy(J)\n",
      "E1=E1*10**-7; \n",
      "\n",
      "#Result\n",
      "print \"The energy is\",E1,\"*10**7 eV\"\n",
      "print \"The energy is\",E2,\"MeV\"\n",
      "print \"The energy is\",E3,\"J\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The energy is 1.0 *10**7 eV\n",
        "The energy is 10.0 MeV\n",
        "The energy is 1.6e-12 J\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 1.7, Page number 6"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "r=0.528*10**-10;       #radius of the orbit(m)\n",
      "q=-1.6*10**-19;        #charge on electron(C)\n",
      "Q=1.6*10**-19;         #charge on Hydrogen nucleus(C)\n",
      "Eo=8.854*10**-12;      #permittivity in free space(F/m)\n",
      "\n",
      "#Calculation\n",
      "E=(q*Q)/(8*3.14*Eo*r);       #electric field intensity between plates(V/m)\n",
      "E1=E/(1.6*10**-19);          #electrifeild intensity(eV)\n",
      "E=E*10**19;\n",
      "E=math.ceil(E*10**2)/10**2;     #rounding off to 2 decimals\n",
      "E1=math.ceil(E1*10**2)/10**2;     #rounding off to 2 decimals\n",
      "\n",
      "#Result\n",
      "print \"The total energy is\",E,\"*10**-19 J\"\n",
      "print \"The total energy is\",E1,\"eV\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The total energy is -21.79 *10**-19 J\n",
        "The total energy is -13.62 eV\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 1.8, Page number 9"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "Q=3.2*10**-19;     #charge on alpha-particle(C)\n",
      "m=6.68*10**-27;    #mass on alpha-particle(kg)\n",
      "B=1.5;          #transverse magnetic field of flux density(Wb/m^2)\n",
      "v=5*10**6;      #velocity of alpha-particle(m/s)\n",
      "\n",
      "#Calculation\n",
      "F=B*Q*v;        #electrostatic force on oil drop(N)\n",
      "R=m*v/(Q*B);    #radius(m)\n",
      "R=math.ceil(R*10**2)/10**2;   #rounding off to 2 decimals\n",
      "R1 = R*100;              #radius(cm)\n",
      "\n",
      "#Result\n",
      "print \"The force on particle is\",F,\"N\"\n",
      "print \"The radius of its circular path\",R,\"m or\",R1,\"cm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The force on particle is 2.4e-12 N\n",
        "The radius of its circular path 0.07 m or 7.0 cm\n"
       ]
      }
     ],
     "prompt_number": 8
    }
   ],
   "metadata": {}
  }
 ]
}