{ "metadata": { "name": "", "signature": "sha256:d47bf0be5cde96d0aef086befce8360c308553e75286c744d02ce7f3929fcd07" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "16: Particle Accelerators" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 16.1, Page number 305" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "fo=9*10**6; #frequency(Hz)\n", "m=6.643*10**-27; #mass(kg)\n", "e=1.6*10**-19; #the charge on electron(C)\n", "\n", "#Calculation\n", "Q=2*e; #electron charge(C)\n", "B=fo*2*math.pi*m/Q; #magnetic flux density(Wb/m^2)\n", "\n", "#Result\n", "print \"magnetic flux density is\",round(B,2),\"Wb/m^2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "magnetic flux density is 1.17 Wb/m^2\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 16.2, Page number 305" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "B=0.7; #magnetic flux intensity(Wb/m^2)\n", "m=3.34*10**-27; #mass(Kg)\n", "e=1.6*10**-19; #the charge on electron(C)\n", "\n", "\n", "#Calculation\n", "Q=e;\n", "fo=B*Q/(2*math.pi*m*10**6); #cyclotron frequency(MHz) \n", "\n", "#Result\n", "print \"The cyclotron frequency is\",round(fo,1),\"MHz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The cyclotron frequency is 5.3 MHz\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 16.3, Page number 306" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "B=0.75; #magnetic flux intensity(Wb/m^2)\n", "m1=1.67*10**-27; #mass(Kg)\n", "m2=3.31*10**-27; #mass(Kg)\n", "e=1.6*10**-19; #the charge on electron(C)\n", "Rm=2; #radius(m)\n", "\n", "#Calculation\n", "Q=e;\n", "Emax_m1=3.12*10**12*B**2*Q**2*Rm**2/m1; #Maximum energy for proton(MeV)\n", "Emax_m2=3.12*10**12*B**2*Q**2*Rm**2/m2; #Maximum energy for deuteron(MeV) \n", "\n", "#Result\n", "print \"Maximum energy for proton is\",round(Emax_m1),\"MeV\"\n", "print \"Maximum energy for deuteron is\",int(Emax_m2),\"MeV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum energy for proton is 108.0 MeV\n", "Maximum energy for deuteron is 54 MeV\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 16.4, Page number 306" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "mo=9.1*10**-31; #mass of electron(kg)\n", "m=1.67*10**-27; #mass of proton(kg)\n", "c=3*10**8; #speed of light(m/s)\n", "E=1; #given energy(MeV)\n", "\n", "#Calculation\n", "Eo=mo*c**2/(1.6*10**-13); #rest energy for electron(MeV)\n", "mbymo_e=1+(E/Eo); #Ratio for electron\n", "Eo=m*c**2/(1.6*10**-13); #rest energy for proton(MeV)\n", "mbymo_p=1+(E/Eo); #Ratio for proton\n", "\n", "#Result\n", "print \"Ratio for electron is\",round(mbymo_e,3)\n", "print \"Ratio for proton is\",round(mbymo_p,6)\n", "print \"answer in the book varies due to rounding off errors\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ratio for electron is 2.954\n", "Ratio for proton is 1.001065\n", "answer in the book varies due to rounding off errors\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 16.5, Page number 306" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "B=0.5; #magnetic field(Wb/m^2)\n", "d=1.5; #diameter(m)\n", "f=59; #frequency(Hz)\n", "e=1.6*10**-19; #the charge on electron(C)\n", "c=3*10**8; #speed of light(m/s)\n", "\n", "#Calculation\n", "R=d/2; #radius(m)\n", "N=c/(4*(2*math.pi*50)*R); #number of revolutions\n", "E=B*e*R*c/(1.6*10**-13); #final energy(MeV)\n", "AE=E/N*10**6; #average energy(eV)\n", "\n", "#Result\n", "print \"final energy is\",E,\"MeV\"\n", "print \"average energy is\",round(AE,1),\"eV\"\n", "print \"answer for average energy given in the book is wrong\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "final energy is 112.5 MeV\n", "average energy is 353.4 eV\n", "answer for average energy given in the book is wrong\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 16.6, Page number 307" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "E=0.51; #kinetic energy(MeV)\n", "R=0.15; #radius(m)\n", "e=1.6*10**-19; #the charge on electron(C)\n", "mo=9.12*10**-31; #mass of electron(kg)\n", "c=3*10**8; #speed of light(m/s)\n", "\n", "#Calculation\n", "Eo=E;\n", "m=mo*(1+(E/Eo)); #mass(kg)\n", "b=math.sqrt(1-(mo/m)**2);\n", "v=b*c; #velocity(m/s)\n", "B=mo*v/(e*R); #flux density(Wb/m^2) \n", "\n", "#Result\n", "print \"mass is\",round(m/1e-31,1),\"*10^-31 kg\"\n", "print \"velocity is\",round(v/1e+8,1),\"*10^8 m/s\"\n", "print \"flux density is\",round(B,5),\"Wb/m^2\"\n", "print \"answer for flux density in the book varies due to rounding off errors\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "mass is 18.2 *10^-31 kg\n", "velocity is 2.6 *10^8 m/s\n", "flux density is 0.00987 Wb/m^2\n", "answer for flux density in the book varies due to rounding off errors\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 16.7, Page number 308" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "E=4; #applied voltage(MeV)\n", "m=3.334*10**-27; #mass of deuteron(kg)\n", "R=0.75; #radius(m)\n", "e=1.6*10**-19; #the charge on electron(C)\n", "\n", "#Calculation\n", "E=4*10**6*e;\n", "fo=math.sqrt(E/(2*m))/(math.pi*R); #frequnecy of generator(Hz)\n", "\n", "#Result\n", "print \"frequnecy of generator is\",round(fo/1e+6,3),\"*10^6 Hz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "frequnecy of generator is 4.158 *10^6 Hz\n" ] } ], "prompt_number": 33 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 16.8, Page number 308" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "roi=15; #rate of increase(Wb/s)\n", "tr=10**6; #total revolutions\n", "\n", "#Calculation\n", "IE=roi*10**-6; #increased energy(MeV)\n", "FE=IE*tr; #Final Energy(MeV) \n", "\n", "#Result\n", "print \"Final Energy is\",FE,\"MeV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Final Energy is 15.0 MeV\n" ] } ], "prompt_number": 36 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 16.9, Page number 308" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "R=0.1; #radius(m)\n", "h=6.625*10**-34; #Plank's constant\n", "c=3*10**8; #speed of light(m/s)\n", "roi=15; #rate of increase(Wb/s)\n", "t=4*10**-4; #period of accerleartion(s)\n", "e=1.6*10**-19; #the charge on electron(C)\n", "\n", "#Calculation\n", "N=c*t/(2*math.pi*R); #number of revolutions\n", "IE=roi; #incresed energy(eV)\n", "ME=N*IE*10**-6; #maximum energy(MeV) \n", "ME1=ME*10**6*e; #conversion in V\n", "p=ME1/c;\n", "gama=h/p; #wavelength of gama rays(m)\n", "\n", "#Result\n", "print \"Maximum energy is\",round(ME,3),\"MeV\"\n", "print \"Corresponding wavelength of gama rays is\",round(gama/1e-13,3),\"*10^-13 m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum energy is 2.865 MeV\n", "Corresponding wavelength of gama rays is 4.336 *10^-13 m\n" ] } ], "prompt_number": 43 } ], "metadata": {} } ] }